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Preface

T his is the sixth edition of the IRS Meth-
odology Report series Special Studies in 
Federal Tax Statistics, 2006.  The papers 

included in this volume were presented in 2006 at 
the Joint Statistical Meetings of the American Statis-
tical Association (ASA) held in Seattle, Washington, 
the National Tax Association’s Annual Conference 
on Taxation held in Boston, Massachusetts, and the 
United Nations Statistical Commission and Eco-
nomic Commission for Europe Conference of Eu-
ropean Statisticians held in Geneva, Switzerland. 

Content

This year’s compilation has been divided into 
six areas of interest:

 The volume begins with four papers on 
the innovative uses of longitudinal panels, 
information documents, and time-series 
analysis;

 The second section presents three papers 
on IRS samples, surveys, and performance 
measurements;

 The third section contains a paper on tying 
Web site performance to mission achieve-
ment;

 The fourth section includes a paper on 
strategies to estimate a measure of het-
eroscedasticity;  

	The	fifth	section	contains	three	papers	on	
special tax provisions for family-owned 
farms and closely held businesses, corpora-
tion life cycles, and the Free File Program;













	The	final	section	presents	a	paper	on	im-
proving customer utility on a centrally 
administered, shared Web site.

Nine of the articles in this volume were prepared 
by authors for publication in the 2007 Proceedings 
of the American Statistical Association (ASA).  
Therefore, the format conforms basically to that 
required by the ASA, with the exception that we 
have not imposed a strict page limitation.  Hence, in 
some cases, additional explanatory material may be 
included that is not available in the Proceedings.

The contents of the papers included here are the 
responsibility of the authors, who followed ASA's 
peer review guidelines for Proceedings papers and 
then sought additional comments from colleagues 
either within the SOI Division or elsewhere within 
IRS.  Views expressed are also the responsibility 
of the authors and do not necessarily represent the 
views of the Treasury Department or the Internal 
Revenue Service.  

Acknowledgments
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Analysis of the Distributions of Income, 
Taxes, and Payroll Taxes via Cross-Section 

and Panel Data, 1979-2004
Michael Strudler, Tom Petska, and Lori Hentz, Internal Revenue Service, 

and Ryan Petska, Ernst and Young LLP

D ifferent approaches have been used to measure 
the distribution of individual income over time.  
Survey data have been compiled with compre-

hensive enumeration, but under reporting of incomes, 
inadequate coverage at the highest income levels, and 
omission of some key sources of income jeopardize 
the validity of results.  Administrative records, such as 
income tax returns, may be less susceptible to under 
reporting of income but exclude certain nontaxable in-
come types and can be inconsistent in periods when the 
tax law has been changed.  Record linkage studies have 
capitalized on the advantages of both approaches, but 
are costly and severely restricted by the laws governing 
interagency data sharing. 

This paper is the seventh in a series examining trends 
in the distribution of individual incomes and tax burdens 
based on a consistent and comprehensive measure of 
income derived from individual income tax returns [1].  
In the previous papers, we demonstrated that the shares 
of income accounted for by the highest income-size 
classes clearly have increased over time, and we also 
demonstrated the superiority of our comprehensive and 
consistent income measure, the 1979 Retrospective In-
come Concept, particularly in periods of tax reform.  In 
this paper, we continue the analysis of individual income 
and tax distributions, adding for 8 years (1996-2003) 
Social Security and Medicare taxes to this analysis and 
using panel data (for 1996-2003).  The paper has three 
sections.		In	the	first	section,	we	briefly	summarize	this	
measure of individual income derived as a “retrospec-
tive concept” from individual income tax returns.  In the 
second section, we present the results of our analysis of 
time series data.  We conclude with an examination of 
Gini	coefficients	computed	from	these	data.

Derivation of the Retrospective    
 Income Concept

The tax laws of the 1980s, 1990s, and early 2000s 
made	significant	changes	to	both	the	tax	rates	and	defini-
tions of taxable income.  The tax reforms of 1981 and 

u

1986	significantly	lowered	individual	income	tax	rates,	
and the latter also substantially broadened the income tax 
base.  The tax law changes effective for 1991 and 1993 
initiated rising individual income tax rates and further 
modifications	 to	 the	definition	of	 taxable	 income	 [2].		
Law changes effective for 1997 substantially lowered 
the maximum tax rate on capital gains.  The newest law 
changes, beginning for 2001, lowered marginal rates 
and the maximum tax rate on long-term capital gains, 
as well as decreased the maximum rates for most divi-
dends.  With all of these changes, the questions that arise 
are what has happened to the distribution of individual 
income, the shares of taxes paid, and average taxes by 
the various income-size classes?

In order to analyze changes in income and taxes 
over	 time,	 consistent	 definitions	of	 income	and	 taxes	
must be used. However, the Internal Revenue Code has 
been substantially changed in the last 26 years—both 
the concept of taxable income and the tax rate sched-
ules	 have	 been	 significantly	 altered.	The	most	 com-
monly used income concept available from Federal 
income tax returns, Adjusted Gross Income (AGI), has 
changed	over	 time	making	 it	 difficult	 to	use	AGI	 for	
intertemporal comparisons of income.  For this reason, 
an	income	definition	that	would	be	both	comprehensive	
and consistent over time was developed [3].  The 1979 
Retrospective Income Concept was designed to include 
the same income and deduction items from items avail-
able on Federal individual income tax returns. Tax Years 
1979 through 1986 were used as base years to identify 
the income and deduction items, and the concept was 
subsequently applied to later years including the same 
components common to all years. 

The calculation of the 1979 Retrospective Income 
Concept includes several items partially excluded from 
AGI for the base years, the largest of which was capital 
gains [4].  The full amounts of all capital gains, as well 
as all dividends and unemployment compensation, were 
included in the income calculation. Total pensions, an-
nuities, IRA distributions, and rollovers were added, 



- 4 -

Strudler, PetSka, Hentz and PetSka

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

197
9

198
0

198
1

198
2

198
3

198
4

198
5

198
6

198
7

198
8

198
9

199
0

199
1

199
2

199
3

199
4

199
5

199
6

199
7

199
8

199
9

200
0

200
1

200
2

200
3

200
4

Top 0.1% Top 1%  Top 5% Top 10% Top 20%

including nontaxable portions that were excluded from 
AGI.		Social	Security	benefits	(SSB)	were	omitted be-
cause they were not reported on tax returns until 1984.  
Also, any depreciation in excess of straight-line depre-
ciation, which was subtracted in computing AGI, was 
added back. For this study, retrospective income was 
computed for all individual income tax returns in the an-
nual	Statistics	of	Income	(SOI)	sample	files	for	the	period	
1979 through 2004.  Loss returns were excluded, and the 
tax returns were tabulated into income-size classes based 
on the size of retrospective income and ranked from 
highest to lowest.  Percentile thresholds were estimated 
or interpolated for income-size classes ranging from 
the top 0.1 percent to the bottom 20 percent [5].  For 
each size class, the number of returns and the amounts 
of retrospective income and taxes paid were compiled.  
From these data, income and tax shares and average taxes 
were computed for each size class for all years.

The Distribution of Income and Taxes

With this database, we sought to answer the fol-
lowing	 questionshave	 the	 distribution	 of	 individual	
incomes (i.e., income shares), the distribution of taxes 
(i.e., tax shares), and the average effective tax rates (i.e., 
tax	burdens)	changed	over	time?		As	a	first	look	at	the	
data, we examined the income thresholds of the bottom 

u

(or entry level) of each income-size class, and a clear 
pattern emerged. While all of the income thresholds have 
increased over time, the largest increases in absolute 
terms, and on a percentage basis, were with the highest 
income-size classes.

For example, $233,539 were needed to enter the top 
0.1 percent for 1979, and $1,639,047 were needed for 
entry into this class for 2004.  This represents more than 
a 600-percent increase.  Also, $79,679 of retrospective 
income were needed to enter the top 1-percent size class 
for 1979, and $363,905 were needed for entry into this 
size class for 2004, an increase of 357 percent.  For the 
top 20 percent, the threshold increased by 179 percent, 
and, for the bottom 20 percent, the increase was only 139 
percent. Since much of these increases is attributable to 
inflation,	we	computed	constant	dollar	thresholds,	using	
the Consumer Price Index [6]. 

What is most striking about these data are the chang-
es between 1979 and 2004 for the various income-size 
percentile thresholds (see Figure A).  For example, the 
threshold for the top 0.1 percent grew (using a 1982-1984 
base) from $321,679 for 1979 to $867,680 for 2004, an 
increase of 170 percent.  Similarly, the threshold for 
taxpayers in the 1-percent group rose from $109,751 for 
1979 to $192,644 for 2004, an increase of just over 75 

Figure A—Constant Dollar Income Thresholds, 1979-2004 (1982-84=100)
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percent.  However, the thresholds for each lower percen-
tile class show smaller increases in the period; the top 
20-percentile threshold increased only 7.2 percent, and 
the 40-percent and all lower thresholds declined.

Income Shares

The share of income accounted for by the top 1 
percent of the income distribution has climbed steadily 
from a low of 9.58 percent (3.28 for the top 0.1 percent) 
for 1979 to a high of 21.55 (10.49 for the top 0.1 percent) 
for 2000.  With the recession and, then, the stagnating 
economy of 2001 and 2002, this share declined for 2 
years but has increased from then to 19.65 percent (9.06 
for the top 0.1 percent) for 2004. While this increase 
has	been	mostly	steady,	there	were	some	significantly	
large jumps, particularly for 1986, due to a surge in 
capital gain realizations after the passage, but prior to 
implementation, of the Tax Reform Act of 1986 (TRA).  
The top 1-percent share also increased rapidly for 1996 
through 2000, when sales of capital assets also grew 
considerably each year.  Notable declines in the top 1-
percent share occurred in the recession years of 1981, 
1990-1991, and 2001.

This pattern of an increasing share of total income is 
mirrored in the 1-to-5-percent class but to a considerably 
lesser degree.  For this group, the income share increased 
from 12.60 percent to 15.19 percent in this period.  The 

5-to-10-percent class’s share of income held fairly steady 
over this period, going from 10.89 percent for 1979 to 
10.99 percent for 2004.  The shares of the lower percen-
tile-size classes, from the 10-to-20-percent classes to the 
four lowest quintiles, show declines in shares of total 
income over the 26-year period (see Figure B). 

Tax Shares—Income Tax

The share of income taxes accounted for by the top 
1 percent also climbed steadily during this period, from 
19.75 percent (7.38 for the top 0.1 percent) for 1979, then 
declined to a low of 17.42 percent (6.28 for the top 0.1 
percent) for 1981, before rising to 36.30 percent (18.70 
for the top 0.1 percent) for 2000 (see Figure C).  The 
corresponding percentages for 2000 for the 1-percent and 
0.1-percent groups are 37.68 percent and 19.44 percent, 
respectively, accounting for the 2000 tax rebate, which 
is discussed below.  For the recession year of 2001 and 
the subsequent year (2002) with its large decline in net 
gains from the sale of capital assets, these shares declined 
to 32.53 percent for the top 1 percent and 15.06 percent 
(15.25 percent including the rebate of the child tax credit) 
for the top 0.1-percent group (32.95 percent and 15.25 
percent, respectively, including a rebate of a portion of 
the child tax credit).  These have since increased to 35.73 
percent for the top 1-percent group and 17.16 percent for 
the top 0.1 percent.  As with incomes, there were some 
years with unusually large increases, though a common 

Figure B—Income Shares by Income Percentile Size Classes, 1979-2004
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feature for these years was double-digit growth in net 
capital gains [7].  The 1-to-5 percent size class exhibited 
relatively modest change in its share of taxes, increasing 
from 17.53 percent to 20.50 percent in the period.  The 
5-to-10 percent class, and all lower income-size classes, 
had declining shares of total tax.  

Average Tax Rates—Income Tax

What is most striking about these data is that the 
levels of the average tax burdens increase with income 
size in most years (the only exceptions being 1980 
through 1986 for just the highest group).  The progres-
sive nature of the individual income tax system is clearly 
demonstrated.

Despite the fact that the overall average tax rate 
remained virtually the same for 1979 and 2001, the 
average rate for all but the very lowest size class actu-
ally declined (see	Figure	D)	[8].		While	this	at	first	ap-
pears to be inconsistent, it is clear how this did in fact 
occur—over time, an increasing proportion of income 
has shifted to the upper levels of the distribution where 
it is taxed at higher rates (see Figure B).  For 2003, the 
average tax rate fell to 11.63 percent, the lowest rate 
over the 26 years of this study.  For 2004, this increased 
slightly to 11.81 percent.

In examining the average tax data by income size, 
four distinct periods emerge.  First, the average tax rates 
were generally climbing up to the implementation of the 
Economic Recovery Tax Act (ERTA) effective for 1982.  
This	was	an	inflationary	period,	and	prior	to	indexing	
of personal exemptions, the standard deduction, and tax 
brackets, which caused many taxpayers to face higher 
tax rates.  (Indexing  became a permanent part of the tax 
law for Tax Year 1985 [9].)  Also, this period marked the 
recovery from the recession in the early 1980s.

Similarly, average taxes also climbed in the period 
after 1992, the period affected by the Omnibus Budget 
and Reconciliation Act (OBRA).  This was not surpris-
ing for the highest income-size classes, ones affected 
by the OBRA-initiated 39.6-percent top marginal tax 
rate, but the average tax rate increases are also evident 
in the smaller income-size classes for most years in the 
1993-to-1996 period as well.

For the majority of intervening years (i.e., 1982 
through 1992), average tax rates generally declined by 
small amounts for most income-size classes, although 
the period surrounding the implementation of the 1986 
Tax Reform Act (TRA) gave rise to small increases in 
some classes.  Despite the substantial base broadening 
and rate lowering initiated by TRA, for most income-size 
classes, the changes to average rates were fairly small.  

Figure C—Income Tax Shares by Income Percentile Size Classes, 1979-2004
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However, it should be kept in mind that individuals can 
and do move between income-size classes.  The rates 
for the top 0.1 percent clearly show the effects of the 
1986 capital gain realizations, in anticipation of the end 
of the 60-percent long-term gain exclusion, which began 
in 1987.  The average tax rate for this income-size class 
dropped for 1986, but it rose sharply for 1987, before 
dropping again for each of the next 3 years.

To assess what happened, it is important to look 
at the underlying data.  The substantial increase in 
capital gain realizations for 1986 swelled the aggregate 
income and tax amounts for upper income classes and 
also raised the income thresholds of these top classes.  
However, since much of the increase in income for 
these size classes was from net long-term capital gains, 
which had a maximum effective tax rate of 20 percent, 
it is not surprising that the average tax rate for these top 
size classes declined.

Next, we consider if those years are affected by 
the Taxpayer Relief Act of 1997 (1997 through 2000), 
when the top rate on long-term capital gains was reduced 
significantly	from	28	percent	to	20	percent.		For	1997,	
the	first	year	under	this	law,	when	the	lower	rates	were	
only partially in effect, the average tax rate fell for the 

top 0.1-percent group of taxpayers but increased for all 
other	groups.		However,	for	1998,	the	first	full	year	under	
lower capital gain rates, all groups above and including 
the 40-to-60-percent class had reduced average tax rates 
(while the lowest two quintiles had virtually the same 
average tax rates).  For all groups (except for the 20-to-40 
and the 60-to-80-percent groups in 1999), the average 
rates returned to increasing for both 1999 and 2000.

The Economic Growth and Tax Relief Reconcilia-
tion Act of 2001 (EGTRRA) further reduced marginal 
tax rates over several years.  One of these reductions 
was the introduction of a 10-percent bracket on the 
first	$6,000	($12,000	if	married	filing	a	joint	return)	of	
taxable income.  In an attempt to fuel a recovery from 
recession, this reduction was introduced retroactively 
in	the	form	of	a	rebate	based	on	Tax	Year	2000	filings.		
Therefore, we simulated the rebate on the Tax Year 2000 
Individual File to see its effects on average tax rates. 
When the rebate (estimated at $40.5 billion) is taken 
into account, the average rates for 2000 decreased for 
all groups, except for the top 0.1 percent and the 1-to-5 
percent, reversing the prerebate increases. Tax Year 2001 
was a mixture of increases and decreases in average tax 
rates by income group.  Most groups paid higher average 
taxes; however, the 1-to-5-percent and 5-to-10-percent 

Figure D—Average Tax Rates by Size Classes, 1979-2004
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groups paid lower average taxes along with the bottom 
20-percent group.  

For 2002, when the 10-percent rate applied to all 
returns and all rates above 15 percent were reduced by 
one-half of 1 percentage point, the average tax rate fell 
for every group.  Further, as the economy stagnated, 
another rebate of $400 per child was sent to individu-
als who received a child tax credit for that year.  This 
was in lieu of receiving the additional amount for 2003 
as part of the increased child tax credit provided by 
the Jobs and Growth Tax Relief Reconciliation Act of 
2003 (JGTRRA).  Simulating this on Tax Year 2002, 
we estimated that $14.2 billion were sent to taxpayers 
further reducing average taxes for 2002.  The individuals 
who gained the most from this rebate were in the 5-to-
10-percent group through the 40-to-60-percent group.  
For 2003 and 2004, with further reductions in marginal 
rates, capital gain rates (to 15 percent), and the introduc-
tion	of	the	same	rates	for	qualified	dividends,	average	
tax rates decreased further to 11.63 percent and 11.81 
percent, respectively.  These were the lowest averages 
over the 26 years of this study.  Further, aside from 
the 0.1-percent group in 1986 and the 0.5-to-1-percent 
group in 1991, all groups had their lowest average rates 
in these 2 years.

Tax Shares—Income Plus Social  
Security Tax

For individual taxpayers, Social Security taxes com-
pose a fairly large portion (about 40 percent for 2003) of 

their Federal tax burden [10].  To broaden our analysis, 
we merged data from W-2s with individual income tax 
records for the years 1996-2003.  Total Social Security 
taxes included self-employment taxes and taxes on 
tips reported on tax returns and two times the Social 
Security taxes (representing both the taxpayers’ and the 
employers’ shares) reported on W-2s.  The employers’ 
share of this tax was added into retrospective income, 
as well.  Also, in order to have a better income concept 
over time, we altered retrospective income by including 
total	Social	Security	benefits.		As	stated	above,	this	was	
not included in income because it was not on older (pre-
1984) tax returns, but, since this part of our study began 
with 1996, we were able to relax this constraint.

Including Social Security taxes (see Figure E), an 
interesting trend occurred.  Through 2000, the tax share 
of all the higher income groups up to the 5-percent class 
increased each year, while the share of all the groups 
above the 20-percent class went down.  However, after 
2000, the top 0.1-percent group paid a decreasing share 
each year, while individuals in the 20-40-percent class 
paid an increasing share each year.  The tax shares of 
other groups varied between the years.  Overall, the top 
20 percent paid a lower tax share (68.03 percent) in 2003 
than they did in 2000 (70.27 percent), but this share 
was still higher than they paid in 1996 (66.21 percent).  
This occurred despite the fact that the share of the top 
0.1-percent group declined from 9.30 percent for 1996 
to 9.02 percent for 2003. 

Year Total < .1%1 - .25%25 - .5% .5 - 1% Top 1%   1-5%   5-10% 10-20% Top 20% 20-40% 40-60%  60-80% Low 20%
1996 100.00 9.30 3.59 3.55 4.44 20.88 16.40 12.29 16.64 66.21 19.82 10.23 3.19 0.55
1997 100.00 9.69 3.75 3.64 4.57 21.66 16.35 12.10 16.36 66.46 19.38 10.27 3.28 0.60
1998 100.00 10.39 3.82 3.65 4.61 22.46 16.63 12.11 16.13 67.34 18.78 9.96 3.32 0.61
1999 100.00 11.24 3.91 3.82 4.70 23.66 17.05 12.06 15.85 68.62 18.23 9.48 3.12 0.55
2000 100.00 12.32 3.96 3.92 4.70 24.90 16.99 11.87 15.58 69.34 17.69 9.26 3.16 0.55

2000 Rebate 100.00 12.65 4.06 4.01 4.80 25.52 17.26 11.95 15.54 70.27 17.34 8.89 2.95 0.55
2001 100.00 9.95 3.74 3.57 4.64 21.90 17.16 12.51 16.44 68.01 18.59 9.74 3.12 0.54
2002 100.00 9.08 3.58 3.56 4.60 20.82 17.47 12.87 16.96 68.12 18.87 9.60 2.90 0.51

2002 Rebate 100.00 9.17 3.62 3.60 4.65 21.03 17.64 12.89 16.91 68.47 18.71 9.46 2.85 0.52
2003 100.00 9.02 3.54 3.57 4.63 20.77 17.54 12.73 16.99 68.03 19.08 9.58 2.78 0.53

-3.01% -1.39% 0.56% 4.28% -0.53% 6.95% 3.58% 2.10% 2.75% -3.73% -6.35% -12.85% -3.64% % change in share

Figure E—Tax Shares (Including Social Security Taxes) by Percentile Size Classes, 1996-2003
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returns	 out	 of	 the	 120	million	 returns	filed	 for	 1996.		
Using	inflation-indexed	income,	we	then	combined	the	
income and taxes over time to create a “combined income 
and	tax”	for	each	of	the	tax	returns.		We	then	reclassified	
each return into percentile classes, with the 5-percent 
income class being the highest class analyzed (due to the 
high sampling variability at levels above this). Looking 
at average taxes for the combined income groups (see 
Figure F), while all groups’ average tax rated declined 
over the period between 1996 from 2003 by 11.6 percent, 
the largest decline was in the higher income groups.  The 
average tax rate of the top 5-percent group went down 
by 13.8 percent (from 28.0 percent to 24.2 percent) and 
the 5-to-10-percent group by 12.9 percent.  The rates fell 
for all groups below the 80-percent level.  The bottom 
20-percent group, however, paid 19.1 percent higher 
average tax rates in 2003 than in 1996 (from 8.9 percent 
to 10.6 percent).  

Analysis of Gini Coefficients

To further analyze the data, we estimated Lorenz 
curves	and	computed	Gini	coefficients	for	all	years.	The	
Lorenz curve is a cumulative aggregation of income from 
lowest to highest, expressed on a percentage basis. To 
construct the Lorenz curves, we reordered the percen-
tile classes from lowest to highest and used the income 
thresholds	as	“plotting	points”	to	fit	a	series	of	regression	
equations for each income-size interval in the 26 years, 
both before and after taxes.

u

Average Tax Rates Including Social 
 Security Taxes Using Panel Data

For 1996 through 2003, we used a panel of indi-
vidual tax returns that were selected at a 1-in-5,000 return 
random sample embedded in each year’s Individual 
Statistics of Income (SOI) sample.  These returns were 
based on the primary taxpayer having certain Social Se-
curity number endings and are part of Social Security’s 
Continuous Work History Sample (CWHS).  The rea-
son for studying a panel of returns is to obtain a more 
well-rounded approach to analyzing tax returns over 
time.  While “the rich” may appear to be getting greater 
concentrations of income over time, the composition of 
who “the rich” are may also be changing over time.  By 
looking	at	 the	panel,	we	defined	 income	groups	from	
the	combined	data	(indexed	for	inflation)	over	this	time	
period.  As with the 1996-2003 cross-sectional study, 
in order to have a better income concept over time, we 
altered retrospective income by including total Social 
Security	benefits.		Then,	we	analyzed	how	income	and	
taxes changed in each of these years, classifying each 
year’s returns in quintile classes.  

In	analyzing	this	panel	over	time,	we	classified	re-
turns into quintile classes for each of the 8 years, 1996 
through	2003.		We	started	with	120	million	returns	filed	
for 1996 and followed these returns.  In analyzing this 
panel	over	time,	we	only	included	returns	that	were	filed	
for each of the 8 years.  This left us with 76.8 million 

u

Year Total Top 5% 5-10% 10-20% 20-40%  40-60%  60-80% Low 20%
1996 22.78 28.01 24.73 23.23 21.82 19.53 16.53 8.91
1997 22.76 27.44 24.34 23.73 21.87 19.86 16.89 9.23
1998 21.83 25.05 23.78 22.59 21.00 19.33 16.76 9.53
1999 22.37 26.91 24.19 22.96 21.34 19.25 16.86 9.88
2000 22.44 26.60 24.13 23.11 21.50 19.38 17.32 10.92
2001 22.13 26.27 24.06 23.00 21.42 19.38 17.17 10.31
2002 21.55 26.78 22.85 22.00 20.33 18.41 16.22 10.01
2003 20.14 24.15 21.55 20.90 19.30 17.72 15.78 10.61

All years 21.94 26.30 23.66 22.64 21.02 19.06 16.68 10.02
% change 96-03 -11.59% -13.78% -12.86% -10.03% -11.55% -9.27% -4.54% 19.08%

Figure F—Combined Panel 'P': Average Tax Rates (Including Social Security Taxes) by Size Classes, 1996-2003
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Once the Lorenz curves were estimated for all years, 
Gini	coefficients	were	calculated	for	all	26	years.	The	
Gini	coefficient,	which	 is	a	measure	of	 the	degree	of	
inequality, generally increased throughout the 26-year 
period signifying rising levels of inequality for both 
the pre- and posttax distributions.  This result was not 
unexpected since it parallels the rising shares of income 
accruing to the highest income-size classes.  Over this 

period,	Figure	G	shows	that	the	beforetax	Gini	coeffi-
cient value increased from 0.469 for 1979 to 0.588 (25.4 
percent) for 2000, while the aftertax Gini value increased 
from 0.439 to 0.558 for a slightly higher percentage in-
crease (25.5 percent).  The economic downturn in 2001 
and 2002 actually decreased the levels of inequality to 
0.555 (pretax) and 0.525 (aftertax).  For 2004, these rose 
back to 0.575 (pretax) and 0.549 (aftertax).

1979 0.469 0.439 0.030 6.3%
1980 0.471 0.441 0.031 6.5%
1981 0.471 0.442 0.029 6.2%
1982 0.474 0.447 0.027 5.7%
1983 0.482 0.458 0.025 5.1%
1984 0.490 0.466 0.024 4.9%
1985 0.496 0.471 0.024 4.9%
1986 0.520 0.496 0.024 4.6%
1987 0.511 0.485 0.026 5.1%
1988 0.530 0.505 0.026 4.8%
1989 0.528 0.504 0.024 4.6%
1990 0.527 0.503 0.024 4.5%
1991 0.523 0.499 0.024 4.6%
1992 0.532 0.507 0.025 4.7%
1993 0.531 0.503 0.028 5.2%
1994 0.532 0.503 0.028 5.3%
1995 0.540 0.510 0.029 5.4%
1996 0.551 0.521 0.030 5.5%
1997 0.560 0.530 0.030 5.4%
1998 0.570 0.541 0.029 5.1%
1999 0.580 0.550 0.030 5.2%
2000 0.588 0.558 0.031 5.2%

2000 Rebate 0.588 0.557 0.032 5.4%
2001 0.564 0.534 0.030 5.4%
2002 0.555 0.525 0.030 5.3%

2002 Rebate 0.555 0.525 0.030 5.3%
2003 0.559 0.533 0.026 4.7%
2004 0.575 0.549 0.026 4.6%

Figure G–Gini Coefficients for Retrospective Income, Before and After Taxes,
1979–2004

Year Gini Before Tax Gini After Tax Difference
Percent

Difference

Figure G—Gini Coefficients for Retrospective Income, Before and After Taxes, 1979-2004
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So, what has been the effect of the Federal tax sys-
tem on the size and change over time of the Gini coef-
ficient	values?		One	way	to	answer	this	question	is	to	
compare the before- and aftertax Gini values [11].   Look-
ing at this comparison, two conclusions are clear. First, 
Federal	income	taxation	decreases	the	Gini	coefficients	
for all years.  This is not surprising in that the tax rate 
structure is progressive, with average rates rising with 
higher incomes so that aftertax income is more evenly 
distributed than beforetax income.  A second question 
is whether the relationship between the beforetax and 
aftertax	Gini	coefficient	values	has	changed	over	time.  

The aftertax series closely parallels the beforetax 
series,	with	reductions	in	the	value	of	the	Gini	coefficient	
ranging from 0.024 to 0.032.  The largest differences, 
which denote the largest redistributive effect of the Fed-
eral tax system, have generally been in the periods of 
relatively high marginal tax rates, particularly 1979-81 
and for 1993 and later years. In fact, simulating the tax 
rebate for Tax Year 2000 results in the largest difference 
(0.032) over all the years.  If this were the only change in 
marginal rates of the new tax law (EGTRRA), the results 
would have been to increase the redistributive effects of 
Federal taxes.  However, for Tax Year 2001 and beyond, 
the marginal rates of higher income classes were reduced 
from 38.6 percent to 35 percent for 2004. 

To investigate further, the percentage differences 
between before- and aftertax Gini values were com-
puted.	These	percentage	changes	in	the	Gini	coefficient	
values, a “redistributive effect,” show a decline ranging 
from 4.5 percent (1990) to 6.5 percent (1980).  As for 
the differences, the largest percentage changes are for 
the earliest years, a period when the marginal tax rates 
were high.  The largest percentage reduction was for 
1980, but the size of the reduction generally declined 
until	1986,	fluctuated	at	relatively	low	levels	between	
1986 and 1992, and then increased from 1993 to 1996.  
However, coinciding with the capital gain tax reduction 
for 1997, the percentage change again declined for 1997 
and 1998.  Nevertheless, it increased for 1999, 2000, and 
2001 (although the 2001 percentage increased slightly 
if the rebate is included with the 2000 data).  For 2003 
and 2004, this difference declined to 4.7 percent and 4.6 
percent, respectively, approaching the 1990 level.

So, what does this all mean?  First, the high marginal 
tax	rates	prior	to	1982	appear	to	have	had	a	significant	
redistributive effect.  But, beginning with the tax rate 
reductions for 1982, this redistributive effect began to 
decline up to the period immediately prior to TRA 1986. 
Although TRA became effective for 1987, a surge in late 
1986 capital gain realizations (to take advantage of the 
60-percent long-term capital gain exclusion) effectively 
lowered the average tax rate for the highest income 
groups, thereby lessening the redistributive effect.

For the post-TRA period, the redistributive effect 
was relatively low, and it did not begin to increase until 
the initiation of the 39.6-percent tax bracket for 1993.  
But since 1997, with continuation of the 39.6-percent 
rate but with a lowering of the maximum tax rate on 
capital gains, the redistributive effect again declined. 
Data from 2003 and 2004 show that the new tax laws 
have continued this trend.  Analysis of panel data shows 
that these trends are not quite as great as seen by looking 
at annual cross-section data, but the trends cited above 
are still apparent. 
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Social Security Taxes, Social Security Benefits, 
and Social Security Benefits Taxation, 2003

Peter Sailer,  Kevin Pierce, and Evgenia Lomize,  
Internal Revenue Service

F or most of its 90-year existence, the Statistics of 
Income (SOI) Division of the Internal Revenue 
Service and its predecessor organizations have 

used data provided by taxpayers on Forms 1040 to ful-
fill	the	legal	mandate	to	produce	statistics	on	the	opera-
tion of the individual income tax system.  It was not un-
til Tax Year 1989 that SOI started using the Information 
Returns Master File (IRMF), which contains electronic 
documents	filed	by	the	payers	of	income	to	individuals,	
to add further details to the tax return information.  To 
date, the SOI Bulletin has featured articles on the dis-
tribution of salaries and wages from Forms W-2[1] and 
the accumulation of assets in Individual Retirement Ac-
counts from Forms 5498[2], based on this rich source 
of administrative data.  In this paper, the authors make 
a modest proposal for another set of statistics that could 
be produced from the IRMF which would shed light not 
only on the operation of the individual income tax and 
the Social Security tax systems, but also on the interac-
tion of the two systems.  The paper illustrates some of 
the	analysis	that	could	be	produced	with	this	file.

	Components of the Social Security 
Impact 

Figure 1 starts from the total income of everybody 
touched by the Social Security system, either as a payer 
of Federal Insurance Contributions Act (FICA) or Self-
Employment Contributions Act (SECA) taxes, or as 
a	 recipient	 of	Social	Security	benefits.	 	The	first	 line	
shows	total	income,	which,	for	filers	of	tax	returns,	is	
the sum of all sources of income as shown on line 22 
of Form 1040, or the equivalent lines of Forms 1040-A 
and 1040-EZ.  For the purpose of this chart, the taxable 
portion	of	Social	Security	benefits	has	been	excluded.	

One of the advantages of working with information 
documents is that they enable SOI to show information 
on	individuals	who	have	not	filed	(and	may	never	file)	
income tax returns for a given year.  For these indi-
viduals, total income can be computed by adding sala-
ries and wages from Forms W-2, gambling winnings 
from Forms W-2G, and nonemployee compensation, 

unemployment compensation, rents, royalties, inter-
est, dividends, and pension distributions from  various  
Forms  1099.  For  2003,  total  income (other than 
Social	Security	benefits)	stood	at	$6.7	trillion.		This	is	

the amount for all participants in the Social Security 
system,	whether	as	benefit	recipients	or	payers	of	So-
cial Security taxes.  The Social Security system added 
$386 billion to this income—basically in the form of 
benefits	payments—and	took	out	$542	billion—mainly	
in Social Security taxes, but also in the taxation of the 
Social	Security	benefits	it	paid	out.

 Figure 1 also shows the details of the additions and 
subtractions.  The $386 billion in additions are almost 
entirely the Social Security pensions and survivor ben-
efits	paid	out	by	SSA,	plus	two	small	technical	adjust-
ments—self-employed individuals who pay their own 
Social Security taxes (instead of having them withheld 
and matched by employers) are able to deduct one-half 
of their so-called “self-employment tax” from their total 
incomes on their tax returns.  This, of course, reduces 
their regular income tax by, roughly, that amount times 
the marginal tax rate.  So, taxpayers in the 33-percent 
tax bracket for 2003 got back on their income tax forms 
roughly one-sixth of the self-employment tax they paid 

Figure 1—Computation of Social Security Impact

Total income before Social Security 6,743,571,198

Additions, total 385,787,734

   Gross Social Security benefits 384,037,692

   Income tax reduction due to SECA 236,808

   Excess FICA credit 1,513,234

Subtractions, total 541,579,465

   FICA tax (employer's portion) 246,016,712

   FICA tax (employee's portion) 246,016,712

   Self-employment tax 29,278,008

   Social Security tax on tips 148,273

   Repayments of SS benefits 1,728,716

   Tax on taxable benefits 18,391,044

=Total income after Social Security 6,587,779,467

Amount ($1,000)
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into Social Security (33 percent of one-half the tax).  In 
this tabulation, only that part of the self-employment 
tax	that	relates	to	retirement	and	survivor	benefits,	also	
known as SECA, is shown.  Medicare taxes and pay-
ments are not part of this analysis.

Another technical adjustment was needed for in-
dividual taxpayers who overpaid their FICA taxes 
because they worked for more than one employer in 
the course of a tax year.  If the total amount of their 
salaries and wages from the two employers exceeded 
the maximum subject to the FICA tax ($87,000 for Tax 
Year 2003), the excess FICA tax over $5,349 could be 
shown as a tax payment on the tax return.  This over-
payment amounted to $1.5 billion for 2003.

The largest subtraction from total income caused 
by the Social Security system is, obviously, the FICA 
tax, half of which is deducted from each employee’s 
salary or wage, and half of which, at least legally, is 
paid by the employer.  If it is true, as economic theory 
holds, that employees eventually get paid what their 
marginal utility determines them to be worth, then the 
employer’s portion of Social Security taxes truly is a 
reduction in employees’ salaries; for that reason, it is 
shown as a subtraction from income in Figure 1.  In any 
case, it does represent amounts going into the Social 
Security system. 

FICA	tax	data	come	from	Forms	W-2	filed	by	each	
employer.  The self-employment tax is computed on 
Schedule SE of Form 1040.  This is the Social Security 
tax paid by self-employed individuals.  For purposes of 
this chart, the Medicare portion of this tax, also com-
puted on Schedule SE, was not included.

Social Security taxes on tip income that had not 
been collected by the employer, and that the waiter or 
other employee with tip income was supposed to report 
on his or her income tax return, represent a very small 
subtraction from total income.

Since the additions include all payments of Social 
Security	benefits,	 the	small	amount	 that	was	paid	out	
in error (usually because the taxpayer earned too much 
money in some quarter to qualify), and had to be re-
paid by the recipient, is shown here as a subtraction.  

Finally, an $18-billion subtraction is shown in Figure 1 
because	some	Social	Security	benefits	are	subject	to	the	
individual income tax.  The amount of taxes thus raised 
is moved from the general fund to the Social Security 
trust fund, and, thus, these taxes do, in fact, go into the 
Social Security system.

 Impact of Social Security Taxes and 
the Individual Income Tax

Figure 2  shows the impact of the Social Security 
tax (both FICA and SECA) on workers and self-em-
ployed individuals at various income levels.  For com-
parison purposes, the average income tax for these 
same individuals is shown as well.  While income taxes 
keep rising with income, Social Security taxes level 
off at just over $13,000 per taxpaying unit when total 
income reaches $160,000.  At the very lowest income 
levels, Social Security taxes actually tend to be higher 
than income taxes.

When the same data are displayed showing total 
income tax and Social Security taxes as a percentage of 
total income, as is done in Figure 3, it becomes dramat-
ically clear that the income tax is a progressive tax (al-
though not as progressive as it used to be), while Social 
Security taxes are (and always have been) regressive.

For	 purposes	 of	 Figure	 3,	 married	 couples	 filing	
jointly are shown as a single taxpaying entity.  It was 
easier to combine the FICA and SECA taxes for the 
two taxpayers than it would have been to try to attri-
bute some portion of  the income tax to each of them.  
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On	 the	other	hand,	 each	nonfiler	 is	 shown	as	a	 sepa-
rate unit, whether married or not, since the information 
documents do not reveal any information on marital 
connections.		In	the	case	of	nonfilers,	the	proxy	for	to-
tal Federal income tax is Federal income tax withheld; 
since	 they	 had	 not	 filed	 by	 the	 end	 of	 the	 following	
year, tax withheld was, in fact, the total amount they 
had paid to the Federal Government.

	Distribution of Social Security 
Benefits

It was noted previously that the impact of the FICA 
and SECA tax was highest on those in the lower-in-
come classes—at least in proportion to income.  Figure 
4 shows that the distributions of Social Security ben-
efits	are	also	highest	for	lower-income	individuals.		Re-
tirees with incomes greater than zero but under $10,000 
derive 96 percent of their incomes from Social Secu-
rity	 benefits.	 	The	 percentage	 drops	 to	 50	 just	 under	
the $20,000 income level, and drops below 5 percent 
around the $400,000 income level.  

Figure 5 shows that, in terms of average Social Se-
curity	benefits,	the	amounts	rise	steadily	from	the	low-
est	 income	 class	 until	 the	 benefits	 reach	 $20,000	 for	
recipients with incomes around $150,000, and that the 
benefits	 then	 bounce	 around	 the	 $20,000	 line	 for	 the	
rest of this distribution.  In other words, the rich do not 
get	any	more	in	Social	Security	benefits	than	the	mid-

dle class, but, as was shown earlier, they do not put any 
more into Social Security than the middle class, either.

	Overall Impact of the Social Security 
System

Figure	6	shows	two	income	distributions:		The	first	
(the solid line) is based on total income without any 
Social	 Security	 benefits	 included	 or	 Social	 Security	
taxes taken out; the second income distribution (dotted 
line) subtracts from total income all the Social Security 
taxes (including income taxes paid on Social Security 

0%

5%

10%

15%

20%

25%

30%

0 50 100 150 200 250 300 350 400 450

Size of total income ($1,000)

Ta
x 

as
 p

er
ce

nt
ag

e 
of

 
to

ta
l i

nc
om

e

Figure 3—All Individuals with Social Security
Taxes, 2003:  Taxes by Type as Percent of 

Total Income

Social Security Tax Income Tax

0%

20%

40%

60%

80%

100%

120%

0 40 80 120 160 200 240 280 320 360 400 440 480

Size of Total Income (incl. SS Benefits) ($1,000)

P
e
rc

e
n

ta
g

e
 o

f 
T

o
ta

l 
In

c
o

m
e

Figure 5—All Individuals with Social Security 
Benefits (SSB):  Average SSB by Size of 

Total Income, 2003

0

5,000

10,000

15,000

20,000

25,000

30,000

0 60 120 180 240 300 360 420 480

Size of Total Income (including SS Benefits)
($1,000)

A
v
e
ra

g
e
 S

S
 B

e
n

e
fi

ts

Figure 4—All Individuals with Social Security 
Benefits (SSB):  SSB as % of Total Income, 2003



- 16 -

Sailer, Pierce, and lomize

system every year.  Then, the average starts rising until 
it reaches positive territory for the 60 to 65 age group, 
and peaks just shy of the $11,000 mark for the 80 to 
85-year-olds. 
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benefits),	and	adds	 in	all	 the	Social	Security	benefits.		
It is evident that the Social Security system does keep 
many people out of the abject poverty of the “Under 
$5,000” class.  The “with Social Security” distribution 
shows just over 20 million reporting units in this class, 
as opposed to over 35 million in the “without Social 
Security” distribution.  On the other hand, the “with 
Social	Security”	distribution	shows	significantly	more	
filing	units	in	the	$10,000	to	$20,000	income	area	than	
does the “without Social Security” distribution.  Be-
tween $20,000 and $70,000, the “with Social Security” 
line runs just very slightly above the “without Social 
Security” line, and, after $70,000, it runs very slightly 
below the “without Social Security” line. 
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Figure 7—Average Impact of Social Security 
System by Age of Participant, 2003

	Social Security Taxes and Other 
Forms of Retirement Savings

SOI’s	merged	 file	 of	 tax	 returns	 and	 information	
documents contains data on other forms of retirement 
savings—Forms W-2 show payments into 401(k) plans 
and	similar	programs	in	the	Government	and	nonprofit	
sectors; Forms 5498 show payments into Individual 
Retirement Accounts, including Traditional and Roth 
IRA plans.  Unfortunately, IRS does not have informa-
tion	on	how	much	is	being	placed	into	defined	benefit	
plans by various employers.  The only evidence for 
those contributions is a checkmark in a box on the W-2.  
Therefore,	 the	following	analysis	 is	confined	to	 those	
taxpayers	who	do	not	have	employer-provided	defined	
benefit	plans.

Figure 8 shows that, for the lowest income taxpay-
ers—those with earned incomes under $25,000—Social 
Security taxes represented the vast majority of their set-
asides for retirement.  For example, in the $20,000 un-
der $25,000 earned income class, Social Security taxes 
(again, counting both the employer and employee por-
tions of FICA) amounted to 12.2 percent of earned in-
come.  Contributions to other types of retirement plans 
amounted to only 1 percent of earned income.  Nonethe-
less, this means that these individuals were having 13.2 
percent of their earned incomes set aside for retirement 
purposes, which is actually a pretty respectable propor-

Figure 6—All Reporting Units in the Social 
Security Systems:  Distribution of Total Income, 

Tax Year 2002

	Impact of the Social Security System 
by Age of Taxpayer

SOI’s	merged	 file	 of	 tax	 returns	 and	 information	
documents contains data on the age of the participants.  
For	the	purpose	of	Figure	7,	Social		Security		benefits	
and Social Security taxes are combined into one vari-
able,	with	benefits	shown	as	positive	amounts	and	taxes	
as negative amounts.  The averages of these positive 
and negative amounts are shown for each age group 
(in 5-year increments).  Figure 7 shows that the So-
cial Security system has a positive impact on the very 
youngest children who come into contact with it,  be-
cause	they	are	getting	survivor	benefits.		In	the	15	un-
der 20 age group, the effect turns negative, as people 
start working and paying Social Security taxes.  During 
the peak earnings years of 35 to 55, participants tend, 
on average, to put between $4,500 and $5,000 into the 
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tion, considering that the highest percentage shown in 
this chart is 15.1 percent, which applies to the $80,000 
under $85,000 earned income class.

	Future Steps

At SOI, we have started to collect these data for 
a panel of taxpayers beginning in 1999.  In addition, 
we have been saving population data from the Informa-
tion Returns Master File going back to 1995.  So, if we 
combine 4 years of data selected retrospectively with 
prospective data from one of our 1999-base panels, we 
will have a data set with which we can follow partici-
pants in the Social Security system for 10 years; if we 
keep building on that, the panel will be available for 
analyzing equitable methods of adjusting the Social Se-
curity and income tax systems to keep Social Security 
solvent for future generations.  

	Endnotes

[1]  See Sailer, Yau, and Rehula (2001-2002) and 
Yau, Gurka, and Sailer (2003).

[2]  See Sailer and Nutter (2004) and Bryant and 
Sailer (2006).
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Figure 8—Retirement Deferrals as Percentage of Earned Income,
by Size of Earned Income, 2003 
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The Tax Year 1999-2003 Individual Income Tax 
Return Panel:  A First Look at the Data

Michael E. Weber, Internal Revenue Service

T his paper represents the Statistics of Income (SOI) 
Division’s	first	release	of	data	from	its	Tax	Year	
1999 Panel of Individual Income Tax Returns.  

A previous ASA paper explained the history and devel-
opment of this panel so that only a brief review of the 
panel’s history and design will be provided in this paper 
[1].  SOI’s mission is to produce and publish data on the 
operation of the Federal tax system.  Policy analysis and 
the development of recommendations on the operation 
of the tax system are not part of SOI’s mission.  SOI 
microdata	files,	tabulations,	and	articles	are	accepted	as	
the nonbiased starting point for policy discussions by 
individuals of all ideological backgrounds.  The fact that 
virtually all of SOI’s published tabulations are based on 
cross-sectional samples where the sampling frames and 
sampling techniques are established and well-known cer-
tainly	helps	SOI	fulfill	this	mission.		The	publication	of	
tabulations based on panel samples, however, presents a 
more complicated situation as will be discussed later. The 
purpose of this paper is to work through some of those 
complications and to arrive at a series of panel tabula-
tions that can be viewed in the same unbiased light as the 
more standard SOI tabulations.  Already today, income 
tax return panels provide policy organizations such as 
the	Treasury	Department’s	Office	of	Tax	Analysis	(OTA)	
and Congress’s Joint Committee on Taxation (JCT) with 
powerful policy analysis tools that are not available to 
researchers outside of those organizations.  But it is not 
OTA or JCT’s responsibility to provide voluminous 
amounts of tabular panel data to the public; it is SOI’s 
responsibility,	and	this	paper	is	hopefully	a	first	step	in	
meeting that responsibility.    

Background

Each year, the Statistics of Income Division pro-
duces a sample of individual income tax returns.  The 
Tax Year 1999 sample included 176,966 returns sampled 
in	92	stratifications.		The	sampling	rates	ranged	from	100	
percent	to	.05	percent	based	on	classifications	of	income	
and the type of forms and attachments included on each 
return [2].  The 1999 Edited Panel is an 83,434-return 

u

subsample of the 1999 cross-sectional sample.  The 
1999	Edited	Panel	contains	only	21	stratifications	with	
sampling ranging from 100 percent to .05 percent.  

The base year of this panel represents a sample of tax 
returns.  Subsequent years represent a sample of the re-
turns	filed	by	individuals	listed	as	taxpayers	on	the	1999	
base	year	return.		This	is	a	significant	difference	because	
it means that the base year sample unit can break apart 
into two returns through divorce or double the number 
of individuals in the unit through marriage.  Even worse, 
a unit can divide into two returns through divorce and 
then, through a second marriage for each original tax-
payer, end up representing four individuals.  It is these 
changes that present problems in tabulating, presenting, 
and interpreting income tax return panel data.  

Potential Solutions

One solution to the changing marital status problem 
is to follow only the primary taxpayer listed on the tax 
return.  The main problem with this approach is that 
approximately 95 percent of primary taxpayers listed 
on	jointly	filed	returns	are	male,	and,	thus,	a	significant	
gender bias would be introduced into any analysis.  

Another	 possible	 solution	 to	 the	 changing	filing	
status problem would be to follow both the primary 
and secondary taxpayers separately.  The main prob-
lem with this approach is the complexity involved in 
trying to divide up income between the primary and 
secondary	taxpayers	on	jointly	filed	returns.		Even	if	the	
income could be divided correctly, the act of doing so 
has implications.  For example, do married individuals 
make independent or joint economic decisions?  If their 
incomes are divided, how is the joint decisionmaking 
aspect retained in the data?

Finally, another possible solution is to simply exam-
ine only those panel units where the marital status has 
not changed.  The main problem with this approach is 
that it excludes all taxpayers who, during the course of 

u
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the study, either get married, divorced, or had a spouse 
die.  If changes in a taxpayer’s marital status or the death 
of a spouse affect his or her economic well-being and 
decisionmaking process, then that information is lost 
under this approach.

Obviously, none of these solutions is really adequate, 
and perhaps the best solution is to utilize all three and 
compare the results.  Unfortunately, such an exercise 
is beyond the scope of this paper.  But given time and 
resource constraints, and the basic structure of the panel, 
the easiest and quickest solution to implement is the third 
solution:		examine	only	those	panel	units	where	the	filing	
status has not changed.

An Analysis of Panel Units That Did  
 Not Change Marital Status from 1999  
 to 2003

The	first	step	is	to	subset	the	file	to	only	those	panel	
units where there are returns present for all 5 years of 
the study.  This is not a required step in analyzing panel 
data. For example, one might want to examine only two 
points	 in	 time,	1999	and	2003,	 in	which	case	 the	file	
would only need to be subset to returns where both of 
those years were present.  But for this paper, the 5-year 
average Adjusted Gross Income (AGI) is computed and 
used in subsequent tables, and, in order to keep the basis 

u

for all tables consistent, only panel units with returns 
present for all 5 years will be used.  (Another solution 
would be to impute missing returns, but that is beyond 
the scope of this paper.)  

As Figure 1 shows, in 1999, the panel contained an 
estimated 127 million returns or panel units.  But, as 
of	2003,	only	106	million	panel	units	had	filed	returns	
for all 5 years.  Where did the 21 million panel units 
go?  First, any single taxpayer who died during this 
time period obviously is part of the 21 million miss-
ing	units,	as	are	any	1999	filers	who	no	longer	met	the	
filing	threshold	for	any	or	all	of	the	subsequent	years.		
Another portion represents taxpayers who should have 
filed	a	return	but	did	not.	Often,	these	taxpayers	file,	but	
do so in a subsequent calendar year.  Roughly 3 percent 
of	the	returns	filed	each	year	are	for	a	previous	tax	year.		
In	 other	words,	 the	 returns	 are	 eventually	 filed	with	
the IRS, and generally within 2 years of the due date.  
Because of the way returns are selected for this panel, 
these returns will eventually be sampled and included in 
the	panel	file.		But	this	presents	SOI	with	an	interesting	
publication issue.  Should the tabulation of panel data 
be held up for 2 years while we await the addition of 3 
percent	of	1	year’s	data?		For	example,	the	file	used	for	
this paper is only complete for the period 1999 to 2001.  
This is a topic for further research.  

Figure 1—Derivation of 1999-2003 Edited Panel Sample Used in Subsequent Tabulations
At least one Column (1) and Column (2) and

return present only one return the same marital status
in all years present in each year in all years

TaxYear (1) (2) (3)
1999 127,029,487                  127,029,487                            127,029,487                        

1999 through 2000 120,887,311                  119,794,388                            114,807,823                        
1999 through 2001 115,810,399                  113,770,493                            104,860,374                        
1999 through 2002 111,048,409                  108,251,388                            96,043,680                          
1999 through 2003 105,938,164                  102,549,251                            87,617,774                          

Notes:  * 2002 and 2003 data are for returns received by IRS through Calendar Year 2004.
                 Additional returns for 2002 and 2003 were filed in Calendar Years 2005 and 2006.
             *  Married filing separately returns have been removed in columns 2 and 3 to simplify processing.
             *  Base-year prior-year returns (approximately 9,000 weighted returns) have been removed.
             *  Base-year single panel members who married another panel member in a subsequent
                 year (approximately 4,000 weighted returns) have been removed.

1999-2003 Edited Panel

PANID Present
PANID Present in all Years &

TaxYear Present all years Only one return Same Marital Status 
1999 127,029,487                  127,029,487                            127,029,487                        

1999 through 2000 120,887,311                  119,794,388                            114,807,823                        
1999 through 2001 115,810,399                  113,770,493                            104,860,374                        
1999 through 2002 111,048,409                  108,251,388                            96,043,680                          
1999 through 2003 105,938,164                  102,549,251                            87,617,774                          

And same individual(s) on returns in 1999 and 2003 87,495,652                          

PANID Present
in all Years &

TaxYear One Return per Year
1999 127,029,487                            

1999 thru 2000 119,794,388                            
1999 thru 2001 113,770,493                            
1999 thru 2002 108,251,388                            
1999 thru 2003 102,549,251                            

TaxYear Returns
1999 127,029,487                        

1999 thru 2000 114,807,823                        
1999 thru 2001 104,860,374                        
1999 thru 2002 96,043,680                          
1999 thru 2003 87,617,774                          
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The	second	step	is	to	subset	the	file	to	those	panel	
units	where	a	return	is	filed	in	every	year	and	only	one	
return	is	filed	each	year.		As	is	shown	in	Figure	1,	by	
2003, this step removes another 3.4 million returns from 
the panel.  These 3.4 million returns generally represent 
joint	filers	who	divorced	and	where	each	taxpayer	now	
files	 independently	 of	 his	 or	 her	 former	 spouse	 and	
couples who on at least one occasion during this 5-year 
period	 filed	 using	 a	marital	 status	 of	married	 filing	
separately.  Note that it is possible to add items from a 
married	couple’s	two	married	filing	separately	returns	
to generate a combined return, but this process was not 
undertaken for this paper. 

The	final	step	is	to	subset	the	file	to	those	panel	units	
where	a	return	is	filed	in	every	year	and	only	one	return	
is	filed	each	year	and	where	the	marital	status	does	not	
change.  As Figure 1 shows, 14.9 million panel units 
were removed in this step.  Only 87.6 million panel units 
remain.  They generally consist of taxpayers who married 
during the 1999-2003 period or married couples where 
one of the spouses died during this period.        

As Table 1 shows, in order to create the database 
that will be used for the subsequent tabulations in this 
paper, 31 percent of the panel units or base year returns, 
accounting for 19.4 percent of base year AGI, have been 
removed.  Further research must be conducted to under-
stand the impact of removing these panel units, including 
answering an important fundamental question:  is it even 
legitimate to produce tabulations where 31 percent of 
the units have been removed.  And if so, what data about 
the 31 percent should also be presented?  

1999-2003 Edited Panel Tables

Table 2 is probably the most basic and straightfor-
ward panel tabulation that it is possible to produce.  It 
is produced using the 87.6 million weighted panel units 
where	each	panel	unit	filed	one	and	only	one	return	for	
each year of the 5-year period under study and where 
each panel unit maintained the same marital status for 
the	entire	5-year	period.		The	panel	units	are	classified	
by the AGI shown on the 1999 return and by the AGI 
shown on the 2003 return.  The 2003 AGI amounts, as 
well as all other amounts shown in this paper, have been 

u

deflated	to	1999	levels	using	the	price	deflator	applied	
in other SOI Individual taxation data [3].  

It	should	be	noted	that	returns	filed	by	dependents	
are included in Table 2.  If an individual can be claimed 
as a dependent by another taxpayer, yet has income 
sufficient	to	require	the	filing	of	a	return,	the	individual	
is	required	to	file	a	tax	return	that	is	separate	from	the	
return on which he or she was claimed as a dependent.  
In the sample design of this panel, as in the standard 
SOI individual cross-sectional samples, no attempt was 
made to create a separate sample stratum for dependent 
returns.  Thus, if sampled, a dependent return represents a 
unique panel unit as does the return, if sampled, on which 
that individual was listed as a dependent.  Dependents, 
however,	may	exhibit	significant	income	changes	when	
they	move	from	dependent	status	to	independent	tax	filer.		
For example, a college student earning $4,000 a year at 
McDonald’s may graduate and earn $40,000 in his or her 
first	professional	job.		In	Table	2,	this	situation	cannot	
be separated from the case of an adult who is 35 years 
old and supporting a family who moves from an income 
of $4,000 in 1999 to $40,000 in 2003.  Consequently, 
Table	3	excludes	returns	filed	by	base	year	dependents.	
This eliminates another 7.2 million panel units.  But as 
can be seen from comparing both tables, the reduction 
in panel units is almost exclusively in the $1 under 
$10,000 AGI class.  

A possible concern with Table 3 is that it only pres-
ents two points in time.  A taxpayer may have earned 
$50,000 in 1999 and $50,000 in 2003 indicating no real 
change in income.  But what if the taxpayer earned only 
$10,000 in 2000, 2001, and 2002?  The 5-year average 
income	is	significantly	different	than	the	income	at	the	
beginning and the end points of the study period.  Con-
sequently,	Table	4	is	classified	by	the	1999	AGI	and	by	
the 5-year average AGI (in 1999 dollars).  As mentioned 
earlier in the paper, Table 4 is the reason why, in con-
structing the database of panel units to be used in this 
study,	only	panel	units	where	a	return	was	filed	for	the	
entire 5-year period were used.  As noted earlier, another 
alternative would be to ease this restriction and develop 
an imputation method for the missing data.  Such an ap-
proach was beyond the scope of this paper but should be 
explored in future research.  Imputations of this nature 
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may become essential as the panel ages and more panel 
units are found to be missing at least one return over 
the course of the study and thus reducing the number 
of panel units available for tabulations such as Table 4.  
Finally, another way to present the 5-year average AGI 
is in terms of the percentage change from the 1999 AGI.  
This has been done in Table 5.  

Endnotes

[1]   Weber, Michael (2005), “The 1999 Individual 
Income Tax Return Edited Panel,” 2005 Proceed-
ings of the American Statistical Association, Social 

u

Statistics Section, Government Statistics Section,  
American Statistical Association, Alexandria, VA.

[2]   For additional information on the sample design of 
the annual Complete Report sample, see Internal 
Revenue Service, Statistics of Income Individual 
Income Tax Returns, Publication 1304 (1999), 
“Section 2:  Description of Sample.”

[3]   AGI is shown in constant dollars, calculated using 
the U.S. Bureau of Labor Statistics consumer price 
index for urban consumers.  U.S. Department of 
Labor, Bureau of Labor Statistics, Monthly Labor 
Review.
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Table 1—1999-2003 Full Edited Panel and Limited Edited Panel Differences

Number of Amount of Number of Amount of 

Size of AGI Returns AGI Returns AGI

No adjusted gross income......................................... 1,016,365 -49,057,319 547,216 -35,182,329

$1 under $10,000....................................................... 26,210,180 132,336,387 13,381,189 70,987,103

$10,000 under $20,000.............................................. 23,966,960 357,434,358 14,953,415 224,834,852

$20,000 under $30,000.............................................. 18,359,111 453,687,690 12,513,685 309,450,548

$30,000 under $40,000.............................................. 13,368,846 464,230,987 9,700,429 337,085,999

$40,000 under $50,000.............................................. 9,812,207 438,993,580 7,584,758 339,966,538

$50,000 under $75,000.............................................. 16,897,458 1,031,747,639 13,882,868 849,235,065

$75,000 under $100,000............................................ 7,755,507 666,429,881 6,653,302 572,107,910

$100,000 under $200,000......................................... 7,188,685 944,083,593 6,271,959 825,602,106

$200,000 under $500,000......................................... 1,891,017 546,818,812 1,640,006 475,056,961

$500,000 under $1,000,000...................................... 355,710 241,057,746 309,944 210,134,851

$1,000,000 under $1,500,000................................... 88,847 107,343,480 76,779 92,732,047

$1,500,000 under $2,000,000................................... 38,160 65,801,348 33,102 57,095,640

$2,000,000 under $5,000,000................................... 57,547 172,372,870 49,710 148,937,801

$5,000,000 under $10,000,000................................. 14,176 97,281,129 12,123 83,216,258

$10,000,000 or more................................................. 8,711 215,765,177 7,289 181,949,562

Total........................................................................... 127,029,487            5,886,327,358         87,617,774           4,743,210,912         

Number of Amount of Number of Amount of 

Size of AGI Returns AGI Returns AGI

No adjusted gross income......................................... 469,149                   (13,874,990)             46.2% 28.3%

$1 under $10,000....................................................... 12,828,991              61,349,284              48.9% 46.4%

$10,000 under $20,000.............................................. 9,013,545                132,599,506            37.6% 37.1%

$20,000 under $30,000.............................................. 5,845,426                144,237,142            31.8% 31.8%

$30,000 under $40,000.............................................. 3,668,417                127,144,988            27.4% 27.4%

$40,000 under $50,000.............................................. 2,227,449                99,027,042              22.7% 22.6%

$50,000 under $75,000.............................................. 3,014,590                182,512,574            17.8% 17.7%

$75,000 under $100,000............................................ 1,102,205                94,321,971              14.2% 14.2%

$100,000 under $200,000......................................... 916,726                   118,481,487            12.8% 12.5%

$200,000 under $500,000......................................... 251,011                   71,761,851              13.3% 13.1%

$500,000 under $1,000,000...................................... 45,766                     30,922,895              12.9% 12.8%

$1,000,000 under $1,500,000................................... 12,068                     14,611,433              13.6% 13.6%

$1,500,000 under $2,000,000................................... 5,058                       8,705,708                13.3% 13.2%

$2,000,000 under $5,000,000................................... 7,837                       23,435,069              13.6% 13.6%

$5,000,000 under $10,000,000................................. 2,053                       14,064,871              14.5% 14.5%

$10,000,000 or more................................................. 1,422                       33,815,615              16.3% 15.7%

Total........................................................................... 39,411,713              1,143,116,446         31.0% 19.4%

Percentage Difference

Full 1999-2003 Edited Panel Limited 1999-2003 Edited Panel

Difference
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Table 2—Tax Year 1999 filers present in 2000, 2001, 2002, and 2003 with no change in marital status 
by 1999 AGI class and 2003 AGI class in 1999 dollars

$1 $10,000 $20,000 $30,000 $40,000 $50,000 $75,000

No under under under under under under under

1999 AGI Class Total AGI $10,000 $20,000 $30,000 $40,000 $50,000 $75,000 $100,000

No adjusted gross income................... 547,216        214,867        102,604        61,466          40,622          35,825          22,864          30,292          10,536          

$1 under $10,000................................. 13,381,189   323,254        6,080,426     4,256,066     1,739,812     560,508        191,054        177,047        30,662          

$10,000 under $20,000........................ 14,951,380   162,757        2,767,133     6,933,350     3,317,825     1,053,740     401,280        230,442        45,944          

$20,000 under $30,000........................ 12,513,684   92,699          963,453        2,558,577     4,851,252     2,620,841     769,204        495,761        97,250          

$30,000 under $40,000........................ 9,700,429     53,742          428,201        965,912        1,927,920     3,214,677     1,843,690     1,043,636     150,678        

$40,000 under $50,000........................ 7,584,758     43,461          220,012        457,085        705,715        1,416,150     2,228,147     2,162,117     262,504        

$50,000 under $75,000........................ 13,882,868   52,788          224,307        444,776        678,126        1,067,007     1,861,221     6,739,803     2,222,558     

$75,000 under $100,000...................... 6,653,302     31,444          82,435          123,614        184,404        205,300        346,463        1,700,573     2,591,549     

$100,000 under $200,000.................... 6,271,958     38,883          66,738          76,925          109,986        132,428        182,893        692,323        1,146,460     

$200,000 under $500,000.................... 1,640,006     31,180          12,752          20,562          25,463          20,003          20,508          91,604          104,496        

$500,000 under $1,000,000................. 309,944        8,161            2,629            3,949            1,908            2,698            3,565            12,991          9,220            

$1,000,000 under $1,500,000.............. 76,779          2,259            750               733               450               1,412            959               2,428            1,855            

$1,500,000 under $2,000,000.............. 33,102          1,405            225               676               468               450               225               1,195            953               

$2,000,000 under $5,000,000.............. 49,710          2,340            468               540               631               475               833               1,256            1,465            

$5,000,000 under $10,000,000............ 12,123          872               70                 143               127               207               84                 375               312               

$10,000,000 or more........................... 7,289            635               17                 53                 37                 47                 54                 127               131               

Total.................................................... 87,615,738   1,060,748     10,952,219   15,904,426   13,584,747   10,331,771   7,873,045     13,381,971   6,676,572     

2003 AGI Class 

Number of Returns

$100,000 $200,000 $500,000 $1,000,000 $1,500,000 $2,000,000 $5,000,000 $10,000,000

under under under under under under under or

1999 AGI Class $200,000 $500,000 $1,000,000 $1,500,000 $2,000,000 $5,000,000 $10,000,000 more

No adjusted gross income............................................ 15,653          7,457            3,382            253               875               342               153               27                 

$1 under $10,000.......................................................... 14,322          7,982            56                 -                -                -                -                -                

$10,000 under $20,000................................................. 33,182          4,994            728               -                -                5                   -                -                

$20,000 under $30,000................................................. 47,811          14,661          2,170            5                   -                -                -                -                

$30,000 under $40,000................................................. 63,304          8,651            17                 -                -                -                -                -                

$40,000 under $50,000................................................. 78,236          9,153            -                2,177            -                -                -                -                

$50,000 under $75,000................................................. 549,973        35,273          6,861            170               -                5                   -                -                

$75,000 under $100,000............................................... 1,311,996     68,024          5,471            2,030            -                -                -                -                

$100,000 under $200,000............................................. 3,354,523     438,767        23,075          6,785            2,173            -                -                -                

$200,000 under $500,000............................................. 501,362        678,530        109,881        11,920          5,039            6,644            49                 12                 

$500,000 under $1,000,000.......................................... 43,631          97,450          89,525          19,717          6,552            5,668            1,247            1,031            

$1,000,000 under $1,500,000....................................... 8,873            17,849          19,466          9,878            4,195            5,007            588               78                 

$1,500,000 under $2,000,000....................................... 4,008            5,833            4,990            4,937            3,084            3,532            748               372               

$2,000,000 under $5,000,000....................................... 4,605            7,173            7,306            4,783            4,720            10,053          2,175            887               

$5,000,000 under $10,000,000..................................... 904               1,691            1,081            850               638               2,280            1,802            686               

$10,000,000 or more.................................................... 436               849               622               380               299               988               960               1,653            

Total............................................................................. 6,032,817     1,404,338     274,631        63,886          27,575          34,525          7,721            4,746            

2003 AGI Class 

Number of Returns
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Table 3—Nondependent Tax Year 1999 filers present in 2000, 2001, 2002, and 2003 with no change 
in marital status by 1999 AGI class and 2003 AGI class in 1999 dollars

$1 $10,000 $20,000 $30,000 $40,000 $50,000 $75,000

No under under under under under under under

1999 AGI Class Total AGI $10,000 $20,000 $30,000 $40,000 $50,000 $75,000 $100,000

No adjusted gross income................. 496,602         195,761         87,897           57,329           36,345           34,034           18,587           28,153           10,536           

$1 under $10,000............................... 7,291,321      151,389         3,227,229      2,438,563      932,795         264,682         114,827         122,804         22,649           

$10,000 under $20,000...................... 14,138,652    144,810         2,564,971      6,730,330      3,128,836      937,373         345,113         214,340         39,967           

$20,000 under $30,000...................... 12,401,452    82,708           937,417         2,544,513      4,829,287      2,606,777      761,172         485,712         95,232           

$30,000 under $40,000...................... 9,658,255      47,747           408,131         959,854         1,925,940      3,208,625      1,843,690      1,041,619      150,678         

$40,000 under $50,000...................... 7,572,662      41,454           220,012         455,078         703,708         1,416,150      2,226,113      2,160,083      262,504         

$50,000 under $75,000...................... 13,866,782    50,781           220,367         444,776         676,097         1,067,007      1,861,221      6,733,728      2,220,524      

$75,000 under $100,000.................... 6,647,392      29,474           82,435           123,614         182,434         203,330         346,463         1,700,573      2,591,549      

$100,000 under $200,000.................. 6,263,968      36,913           66,738           74,955           109,986         132,428         182,893         690,242         1,146,460      

$200,000 under $500,000.................. 1,638,337      31,180           12,752           20,562           24,907           20,003           20,508           91,048           104,496         

$500,000 under $1,000,000............... 308,924         8,161             2,459             3,779             1,908             2,698             3,565             12,652           9,051             

$1,000,000 under $1,500,000............ 76,553           2,259             750                733                450                1,412             959                2,371             1,855             

$1,500,000 under $2,000,000............ 32,989           1,405             225                676                468                450                225                1,139             953                

$2,000,000 under $5,000,000............ 49,572           2,340             468                540                614                475                833                1,256             1,465             

$5,000,000 under $10,000,000.......... 12,113           872                70                  143                127                207                84                  375                312                

$10,000,000 or more......................... 7,286             635                17                  53                  37                  47                  54                  127                131                

Total.................................................. 80,462,859    827,890         7,831,937      13,855,497    12,553,939    9,895,700      7,726,307      13,286,222    6,658,361      

2003 AGI Class 

Number of Returns

$100,000 $200,000 $500,000 $1,000,000 $1,500,000 $2,000,000 $5,000,000 $10,000,000

under under under under under under under or

1999 AGI Class $200,000 $500,000 $1,000,000 $1,500,000 $2,000,000 $5,000,000 $10,000,000 more

No adjusted gross income........................................... 15,653           7,274             3,382             253                875                342                153                27                  

$1 under $10,000........................................................ 10,325           6,002             56                  -                -                -                -                -                

$10,000 under $20,000............................................... 29,184           2,996             728                -                -                5                   -                -                

$20,000 under $30,000............................................... 43,795           14,661           172                5                   -                -                -                -                

$30,000 under $40,000............................................... 63,304           8,651             17                  -                . -                -                -                

$40,000 under $50,000............................................... 76,229           9,153             -                2,177             -                -                -                -                

$50,000 under $75,000............................................... 549,973         35,273           6,861             170                -                5                   -                -                

$75,000 under $100,000............................................. 1,311,996      68,024           5,471             2,030             -                -                -                -                

$100,000 under $200,000........................................... 3,352,553      438,767         23,075           6,785             2,173             -                -                -                

$200,000 under $500,000........................................... 501,362         677,973         109,881         11,920           5,039             6,644             49                  12                  

$500,000 under $1,000,000........................................ 43,461           97,450           89,525           19,717           6,552             5,668             1,247             1,031             

$1,000,000 under $1,500,000..................................... 8,873             17,849           19,466           9,878             4,195             4,837             588                78                  

$1,500,000 under $2,000,000..................................... 4,008             5,777             4,990             4,937             3,084             3,532             748                372                

$2,000,000 under $5,000,000..................................... 4,587             7,173             7,306             4,783             4,720             9,984             2,140             887                

$5,000,000 under $10,000,000................................... 899                1,691             1,081             850                638                2,280             1,797             686                

$10,000,000 or more................................................... 436                849                622                380                299                986                959                1,653             

Total............................................................................ 6,016,638      1,399,564      272,633         63,886           27,575           34,284           7,680             4,747             

2003 AGI Class 

Number of Returns
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Table 4—Nondependent Tax Year 1999 filers present in 2000, 2001, 2002, and 2003 with no change
in marital status by 1999 AGI class and average 1999-2003 AGI class in 1999 dollars

$1 $10,000 $20,000 $30,000 $40,000 $50,000 $75,000

No under under under under under under under

1999 AGI Class Total AGI $10,000 $20,000 $30,000 $40,000 $50,000 $75,000 $100,000

No adjusted gross income............... 496,602         244,713         103,300         53,236           38,361           16,612           14,740           11,493           3,829             

$1 under $10,000............................. 7,291,321      77,293           3,733,190      2,783,108      502,121         122,257         40,331           22,531           4,288             

$10,000 under $20,000.................... 14,138,652    32,600           1,103,155      9,341,917      2,968,718      472,937         125,178         65,591           18,796           

$20,000 under $30,000.................... 12,401,452    6,453             92,175           2,054,290      7,156,297      2,465,181      425,060         158,102         26,034           

$30,000 under $40,000.................... 9,658,256      6,394             16,461           318,777         1,905,998      4,903,657      1,930,748      516,779         46,365           

$40,000 under $50,000.................... 7,572,662      4,796             6,173             77,148           448,226         1,434,585      3,551,698      1,926,940      98,253           

$50,000 under $75,000.................... 13,866,782    11,631           2,140             37,306           219,033         597,781         1,822,815      9,240,646      1,716,485      

$75,000 under $100,000.................. 6,647,392      177                556                8,136             25,391           96,145           147,910         1,577,060      3,755,049      

$100,000 under $200,000................ 6,263,968      2,802             2,081             556                2,140             31,397           48,824           342,598         1,077,802      

$200,000 under $500,000................ 1,638,337      4,541             766                619                1,113             2,098             3,194             15,341           35,019           

$500,000 under $1,000,000............. 308,924         821                -                 -                 56                  170                -                 783                56                  

$1,000,000 under $1,500,000.......... 76,553           12                  56                  -                 -                 -                 -                 -                 -                 

$1,500,000 under $2,000,000.......... 32,989           100                -                 5                    -                 -                 -                 -                 -                 

$2,000,000 under $5,000,000.......... 49,572           215                56                  5                    -                 -                 -                 17                  -                 

$5,000,000 under $10,000,000........ 12,113           61                  -                 -                 -                 -                 -                 -                 10                  

$10,000,000 or more....................... 7,286             12                  -                 -                 -                 -                 -                 -                 -                 

Total................................................ 80,462,860    392,619         5,060,111      14,675,103    13,267,454    10,142,820    8,110,499      13,877,882    6,781,986      

1999-2003 Average AGI Class 

Number of Returns

$500,000 $1,000,000 $1,500,000 $2,000,000 $5,000,000 $10,000,000 $100,000 $200,000

under under under under under or under under

1999 AGI Class $1,000,000 $1,500,000 $2,000,000 $5,000,000 $10,000,000 more $200,000 $500,000

No adjusted gross income......................................... 260                262                39                  107                116                12                  4,628             4,894             

$1 under $10,000...................................................... -                 -                 -                 -                 -                 -                 6,200             -                 

$10,000 under $20,000............................................. 170                -                 -                 5                    -                 -                 7,486             2,098             

$20,000 under $30,000............................................. 5                    -                 -                 -                 -                 -                 17,683           170                

$30,000 under $40,000............................................. 17                  -                 -                 -                 -                 -                 12,503           556                

$40,000 under $50,000............................................. -                 556                170                -                 -                 -                 20,056           4,062             

$50,000 under $75,000............................................. -                 -                 5                    -                 -                 -                 201,309         17,629           

$75,000 under $100,000........................................... 2,072             -                 -                 -                 -                 -                 1,013,742      21,156           

$100,000 under $200,000......................................... 11,365           81                  2,030             -                 -                 -                 4,405,489      336,803         

$200,000 under $500,000......................................... 77,690           6,204             1,533             3,476             24                  -                 455,894         1,030,824      

$500,000 under $1,000,000...................................... 139,607         22,584           4,134             4,335             1,216             25                  11,977           123,159         

$1,000,000 under $1,500,000................................... 30,609           20,003           6,481             4,389             308                . 356                14,340           

$1,500,000 under $2,000,000................................... 9,257             8,023             5,487             5,117             505                242                79                  4,174             

$2,000,000 under $5,000,000................................... 10,437           9,177             7,508             18,720           2,337             544                17                  537                

$5,000,000 under $10,000,000................................. 46                  1,109             1,835             4,949             3,306             765                -                 31                  

$10,000,000 or more................................................. -                 11                  15                  2,116             2,054             3,069             -                 5                    

Total.......................................................................... 281,535         68,010           29,238           43,214           9,867             4,658             6,157,419      1,560,438      

1999-2003 Average AGI Class 

Number of Returns
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Table 5—Tax Year 1999 nondependent filers present in 2000, 2001, 2002, and 2003 with no change 
in marital status by 1999 AGI class and average 1999-2003 AGI class in 1999 dollars

1999 AGI Class -100% 75%-100% 50%-75% 25%-50% 0 .1-25 % Total

$1 under $10,000...........................................                      77,293                     14,570                    88,039                  318,916                1,034,061                   7,291,321 

$10,000 under $20,000..................................                      32,600                     12,008                  171,947               1,116,009                4,184,732                 14,138,652 

$20,000 under $30,000..................................                        6,453                     13,994                  172,635               1,051,765                3,960,772                 12,401,452 

$30,000 under $40,000..................................                        6,394                       8,433                  163,984                  827,310                3,446,821                   9,658,256 

$40,000 under $50,000..................................                        4,796                     10,187                  117,338                  659,362                2,753,416                   7,572,662 

$50,000 under $75,000..................................                      11,631                       6,914                  263,230               1,052,621                5,507,597                 13,866,782 

$75,000 under $100,000................................                           177                       8,692                  152,127                  571,149                2,782,426                   6,647,392 

$100,000 under $200,000..............................                        2,802                     10,159                  231,935                  822,798                2,457,690                   6,263,969 

$200,000 under $500,000..............................                        4,541                     13,940                  125,620                  363,488                   554,625                   1,638,337 

$500,000 under $1,000,000...........................                           821                       5,717                    47,946                    72,676                     87,984                      308,924 

$1,000,000 under $1,500,000........................                             12                       2,841                    18,023                    18,383                     16,747                        76,553 

$1,500,000 under $2,000,000........................                           100                       2,312                      8,540                      7,411                       6,094                        32,989 

$2,000,000 under $5,000,000........................                           215                       4,484                    14,488                    10,533                       9,042                        49,572 

$5,000,000 under $10,000,000......................                             61                       2,058                      3,835                      2,263                       1,572                        12,113 

$10,000,000 or more......................................                             12                       1,832                      2,199                      1,234                         853                          7,286 

Total............................................................... 147,906                  118,139                  1,581,886              6,895,918             26,804,431            79,966,259               

1999-2003 Average Indexed AGI Percentage Change from 1999 AGI

Positive

1999 AGI Class 0 .1-25 % 25%-50% 50%-75% 75%-100% 100%

$1 under $10,000..............................................................................                 1,178,392                  952,202                  637,414                   542,640                   2,447,793

$10,000 under $20,000.....................................................................                 4,650,586               1,884,650                  929,415                   486,283                      670,422

$20,000 under $30,000.....................................................................                 4,973,418               1,385,268                  438,329                   175,801                      223,016

$30,000 under $40,000.....................................................................                 3,894,720                  880,707                  255,018                     81,405                        93,464

$40,000 under $50,000.....................................................................                 3,289,105                  523,171                  116,643                     57,437                        41,206

$50,000 under $75,000.....................................................................                 5,958,052                  781,723                  152,324                     62,679                        70,011

$75,000 under $100,000...................................................................                 2,684,583                  303,025                    74,243                     24,924                        46,047

$100,000 under $200,000.................................................................                 2,169,316                  343,000                    88,947                     50,879                        86,443

$200,000 under $500,000.................................................................                    361,686                  110,951                    52,451                     18,622                        32,412 

$500,000 under $1,000,000..............................................................                     49,727                    17,816                      7,575                       6,455                        12,208 

$1,000,000 under $1,500,000...........................................................                       9,823                      3,943                      2,999                       1,008                          2,775 

$1,500,000 under $2,000,000...........................................................                       3,828                      1,848                         829                         509                          1,519 

$2,000,000 under $5,000,000...........................................................                       4,661                      2,541                      1,235                         615                          1,758 

$5,000,000 under $10,000,000.........................................................                       1,150                         558                         199                         116                             300 

$10,000,000 or more.........................................................................                          564                         256                         113                           57                             166 

Total 29,229,611             7,191,660              2,757,735             1,509,432              3,729,540                 

Note:  This table exclude filers with "No adjusted gross income" for Tax Year 1999.

1999-2003 Average Indexed AGI Percentage Change from 1999 AGI

Negative
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Creativity and Compromise: Constructing 
a Panel of Income and Estate Tax Data 

for Wealthy Individuals*  
Barry W. Johnson and Lisa M. Schreiber, Internal Revenue Service

T he Statistics of Income Division (SOI) of the IRS 
collects statistical data from all major Federal tax 
and information returns that are used by both the 

Congressional and Executive branches of the Govern-
ment to evaluate and develop tax and economic policy.  
Among these are annual studies of Form 1040, U.S. 
Individual Income Tax Return, and Form 706, United 
States Estate (and Generation–Skipping Transfer) Tax 
Return.

Form	1040	is	filed	annually	by	individuals	or	mar-
ried couples to report income, including wages, interest, 
dividends, capital gains, and some types of business 
income.  In 1987, SOI undertook a major revision of 
the sample of Forms 1040 included in its annual studies 
in order to include a panel component, along with the 
usual cross-sectional sample.  Cross-sectional samples 
provide reliable coverage of population totals and sup-
port annual budget projections as well as a wide range 
of other research; panels are more useful for estimating 
behavioral responses to hypothetical tax law changes. 
The new sample design was created to include all mem-
bers	of	a	tax	family	(primary	and	secondary	filers	and	
their dependents) in the panel, and represented the cohort 
of	tax	families	filing	returns	in	1988	for	Tax	Year	1987.	
It	included	39	strata	based	on	income,	filing	status,	and	
total receipts from businesses and farms (see Czajka 
and Schirm, 1991; Schirm and Czajka, 1991).  For the 
base year, the initial SOI Form 1040 sample included 
114,700 returns, 88,000 of which were panel members, 
not	counting	returns	filed	by	dependents,	which	were	
added at a later time.

In 1994, the sample for SOI’s annual estate tax 
studies was changed so that data from any Form 706 
filed	for	a	deceased	1987	Family	Panel	member	would	
be collected.  A Federal estate tax return, Form 706, 
must	be	filed	for	every	U.S.	decedent	whose	gross	es-
tate, valued on the date of death, combined with certain 

lifetime gifts made by the decedent, equals or exceeds 
the	filing	 threshold	applicable	for	 the	decedent’s	year	
of	death.		The	return	must	be	filed	within	9	months	of	a	
decedent’s death, although a 6-month extension is often 
requested and granted.  All of a decedent’s assets, as well 
as the decedent’s share of jointly owned and community 
property assets, are included in the gross estate for tax 
purposes and reported on Form 706.  Also reported are 
most life insurance proceeds, property over which the 
decedent possessed a general power of appointment, and 
certain transfers made during life.  Assets are valued on 
the day of the decedent’s death, although an estate is also 
allowed to value assets on a date up to 6 months after a 
decedent’s death if market values decline.  Special valua-
tion rules and a tax deferral plan are available to an estate 
that is primarily composed of a small business or farm.  
Expenses and losses incurred in the administration of 
the estate, funeral costs, the decedent’s debts, bequests 
to	a	surviving	spouse,	and	bequests	to	qualified	charities	
are all allowed as deductions against the estate for the 
purpose of calculating the tax liability.  

The Tax Family Concept

The initial unit of observation for the SOI 1987 
family	panel	was	defined	as	a	tax	family,	which	included	
a taxpayer, spouse, and all dependents (not limited to 
children) claimed by either.  Thus, a tax family could 
represent	single	filers	(widowed,	divorced	or	separated,	
or those who were never married), as well as married 
filers	and	their	dependents.		Dependents	did	not	need	to	
live in the same household as the parent to be included 
in the tax family; however, information on dependents 
whose	incomes	fell	below	the	filing	threshold	was	gener-
ally not available unless reported on the parent’s return.  
Coresident family members who were not claimed as 
dependents were not included in the tax family.  An 
interesting complication of the tax family concept is the 
treatment of married couples who, for various reasons, 

u

*Johnson, Barry W. and Schreiber, Lisa M. (2006), “Creativity and Compromise: Constructing a Panel of Income and 
Estate Tax Data for Wealthy Individuals,” American Statistical Association, Proceedings, Section on Survey Research 
Methods, (forthcoming).
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elected	to	file	separately.		For	the	purposes	of	the	SOI	
panel,	only	the	partner	whose	separately	filed	return	was	
selected into the sample in 1988 was included in the 
panel; the only way for both spouses of a married couple 
filing	separately	in	1988	to	have	been	permanently	in-
cluded	in	the	family	panel	was	for	returns	filed	by	each	
spouse to have been independently selected.  Thus, the 
tax	family	differs	significantly	from	the	more	common	
“household” measure used by many national surveys 
(Czajka and Schirm, 1993) [1].

The Data

Between 1987 and 2004, there were 6,614 Federal 
estate	tax	returns	filed	for	1987	Family	Panel	members	
or visitors [2].  Of these, 5,659 estate tax returns were 
identified	as	having	been	filed	for	permanent	1987	Indi-
vidual Family Panel members who died between 1994 
and 2004 [3].  These 5,659 decedents form the core of 
the SOI Family Panel Decedent Data Set (FPDD) [4].  

Individual income tax data were collected by SOI 
for the 1987 Family Panel from Tax Year 1987 through 
Tax Year 1996.  SOI data consist of both the set of data 
items that are collected for administrative processing of 
Form 1040 and all attachments, as well as many more 
detailed data items required for complex statistical and 
economic analysis of taxpayer behavior.  In addition, 
data collected by SOI are extensively tested and adjusted 
to minimize nonsampling error related to taxpayer mis-
takes and errors introduced during the data transcription 
process.  For tax years after 1996, SOI continued to 
collect administrative data related to the Family Panel 
members, but due to problems of panel drift decided to 
discontinue SOI processing of panel member returns, 
electing instead to develop new panels based on lessons 
learned from this initial exercise.  The most convenient 
source of the administrative data for 1997 to 2004 is 
the Compliance Data Warehouse (CDW) maintained by 
the	IRS	Office	of	Research.		The	CDW	houses,	among	
other things, a complete archive of administrative data 
for Form 1040 and selected attachments in a normalized 
relational database.  Its primary purpose is generalized 
statistical research on taxpayer behavior, so that very 
little information which can be used to identify individual 
taxpayers is available.  In fact, only a four-digit name 
control and a masked Social Security number (SSN) for 

u

the	primary	filer	of	a	return	are	available	to	most	users	
of this dataset.  Special permission was required to gain 
access to tables that link the actual SSN with the masked 
version.  Combining data from SOI and the CDW, a total 
of	72,373	income	tax	returns	filed	for	Tax	Years	1987-
2003 were available for the FPDD.  

Ideally, an income tax return would be available 
for every tax period between 1987 and a decedent’s 
year of death.  For 98.2 percent of decedents, this was 
the case.  For 1.3 percent of all decedents, only 1 return 
was missing from the time series 1987 through the last 
full year prior to death, leaving only a handful of dece-
dents for whom more than 1 return was missing from 
the panel [5]. 

A	panel	sample	of	income	tax	filers,	the	elements	
of which have at their core two common factors, that of 
being sampled based on 1987 reported income and that 
of	having	an	estate	tax	return	filed	sometime	after	that,	
poses interesting analytical challenges.  Two of these 
relate to selecting appropriate reference periods and de-
termining how to treat changes in tax family composition 
over time.  In addition, the selection criteria for inclusion 
in the FPDD changed during the sample period due to 
changes	in	the	estate	tax	filing	threshold,	which	ranged	
from $600,000 in gross assets in 1994 to $1.5 million 
in 2004.  Another important consideration is that only a 
decedent’s share of a married couple’s assets is reported 
on an estate tax return, while income tax returns for mar-
ried	couples	who	file	jointly	report	income	attributable	to	
both partners.  Because income tax data were obtained 
from two different sources, there are also variations in 
the available data items from different tax years, subtle 
differences	in	data	definitions,	and	differences	in	data	
quality.  Finally, with a few exceptions, only income 
subject to taxation is reported on a tax return, and that 
reported income may be subject to both accidental and 
intentional misreporting by the taxpayer.  

The FPDD includes individual income tax data for 
Tax	Period	1987	for	all	sampled	tax	families	by	defini-
tion.  It also includes an estate tax return for at least one 
member of each tax family.  This suggests two relevant 
reference periods for research purposes, either 1987 or 
the year of death reported on the estate tax return.  Se-
lecting 1987 as the reference period is advantageous for 
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some research because the probability of being selected 
into	the	file	is	known,	making	it	theoretically	possible	to	
produce	population	estimates	from	the	file.		However,	
since	wealth	 valuation	 data	 in	 the	file	 are	 for	 deaths	
between 1994 and 2004, the time series of income data 
vary from about 7 years to 17 years, which might be 
limiting for certain types of analysis.  

Because one of the prime features of the FPDD is the 
connection of income to wealth, the date of death—that 
is, the date for which wealth data are available—is also 
an attractive reference period.  The income stream that 
would be most relevant in this case would be income 
reported in the years immediately prior to death.  Fo-
cusing on income in this way would be appropriate for 
studying changes in income sources and savings hab-
its as individuals approach the end of their lives, and 
analyzing the relationship between wealth and realized 
income.  Given that years of death in the FPDD range 
from 1994-2004, a disadvantage of this approach is the 
difficulty	 of	 controlling	 for	 intertemporal	 differences	
in economic conditions that affect rates of return and 
therefore	influence	portfolio	allocation	decisions.		This	
dynamic nature of portfolio allocation decisions, often 
indicated by the realization of capital gains, also makes 
it	difficult	 to	align	 income	earned	 in	one	period	with	
assets observed in another, even when the two periods 
are relatively close.  

Longitudinality introduces problems with the tax 
family	 concept	 because,	 over	 time,	 a	filing	 unit	may	
change composition, which is usually accompanied 
by	changes	in	filing	status	(Czajka	and	Radbill,	1995).		
For example, married persons divorce, single persons 
marry,	couples	who	customarily	file	jointly	may	elect	to	
file	separately	and	vice	versa,	dependent	filers	may	file	
independently, or one spouse of a married couple may 
die.  Tax families for married persons can be particularly 
complex.  As a result, an individual might appear in the 
panel	as:	a	primary	filer	on	a	joint	return	married	to	an	
original panel member or visitor (spouse who entered the 
panel	after	1988);	a	married	primary	filer	on	a	separate	
return whose spouse may or may not be in the panel; a 
secondary	filer	on	a	joint	return	(married	to	an	original	
panel	member	or	to	a	visitor);	and	as	a	single	filer.		The	
longer the time series is carried forward, the greater the 
possibility for combinations of these events to occur.  

There are a number of strategies for handling these 
changes in tax family composition.  The most straight-
forward	is	to	limit	analysis	to	only	those	filing	units	that	
do not change over time.  However, this approach tends 
to	introduce	a	bias	since	the	more	stable	filing	units	will	
tend to have more stable incomes.  A second approach is 
to focus analysis on person level data, imputing income 
for each individual in the tax family.  

Figures 1 and 2 show panel members grouped into 
two	broad	 categories,	 single	filers	 and	 joint	filers,	 in	
order	to	examine	changes	in	filing	status	over	time	[6].		
Looking	first	 at	 each	panel	member’s	filing	 status	 in	
1987,	Figure	1	shows	that,	overall,	filing	status	changed	
for	24.6	percent	of	all	filers	between	1987	and	the	year	
prior to death [7].  There was slightly more stability for 
single	filers,	 only	15.2	 percent	 of	whom	filed	 a	 joint	
return at some point during the period; 26.4 percent 
of	 joint	filers	became	 single	filers	 sometime	between	
1987 and death.  Figure 2 shows each panel member’s 
filing	status	in	the	year	prior	to	death	and	compares	it	
to	income	tax	returns	filed	for	earlier	tax	periods.		Only	
filers	for	whom	a	Form	1040	was	available	for	at	least	
7	years	prior	to	death	were	included	in	the	figure	[8].		
Using	this	criterion,	filing	status	was	constant	for	85.1	
percent of all panel members over the 7 years preceding 
death.		Individuals	who	were	single	filers	at	death	were	
much	more	likely	to	have	changed	filing	status	in	the	

Figure 1—Filing Status Stability, Using 1987 
as Reference Year

Number Percentage
Single 881 747 84.8
Joint 4,778 3,518 73.6
Total 5,659 4,265 75.4

Filing status unchanged 1987 
to 1 year prior to death

Return
present
1987

Filing status

Figure 2—Filing Status Stability Using Year of Death
as Reference Year

3 5 7
Single 1,865 1,586 1,370 1,186 63.6
Joint 3,744 3,681 3,630 3,588 95.8
Total 5,609 5,267 5,000 4,774 85.1

Number of years prior to death 
filing status unchanged

Return filed 
year prior to 

death

Filing
status

Percentage
unchanged
for 7 years
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years	preceding	death	than	those	who	were	joint	filers.		
Only 63.6 percent of all individuals who were single 
filers	in	the	year	prior	to	death	had	been	single	over	the	
7	years	examined,	reflecting	both	couples	for	whom	one	
spouse died and those who divorced or separated dur-
ing the period.  Almost 95.8 percent of individuals who 
were	joint	filers	at	death	had	been	married	for	at	least	
the previous 7 years.

Descriptive Statistics

Despite the limitations and challenges discussed in 
the previous section, the FPDD gives a unique oppor-
tunity to learn more about the way that incomes change 
as people age and contemplate the end of their lives 
and also provides a snapshot of the wealth that was the 
source	of	a	portion	of	that	income.		This	section	briefly	
describes individuals in the FPDD.  For this analysis, 
filing	units	 are	 again	 examined	 in	 two	broad	groups,	
single	filers	and	joint	filers,	all	estimates	are	unweighted,	
and all money amounts have been converted to constant 
2001 dollars [9].  

There are 5,659 decedents in the FPDD.  In 1987, 
the	base	year	of	the	panel,	881	were	single	filers,	48.2	
percent of whom were female.  The majority, 64.3 

u

percent, of the 4,778 panel decedents who were joint 
filers	in	1987	were	male.		The	mean	and	median	ages	
of females in the FPDD were 65 and 66, respectively, in 
1987 and 76 and 78 at death.  The mean and median age 
for males in 1987 were 63 and 64, respectively, and 75 
and 76 at death.  These statistics indicate that many of 
the decedents in the FPDD were at or nearing retirement 
in 1987, the inception of the panel.      

For	all	filing	units	whose	filing	status	did	not	change	
between 1987 and the year prior to death, reported ad-
justed gross income (AGI) declined over this period, 
which is not surprising given that most individuals in 
the panel were transitioning from work into retirement 
over	the	period	covered	by	the	panel.		For	single	filers,	
mean AGI declined from almost $2.0 million in 1987 
to $980,000 at death.  Figure 3 shows that this decline 
was	an	overall	flattening	and	downward	shift	of	the	AGI	
distribution	for	these	filers,	with	relatively	little	change	
for those in the lower percentiles and with the largest 
differences in the middle of the distribution.  Median 
AGI, for example, declined from about $580,000 in 1987 
to almost $200,000 in the year prior to death, a decrease 
of 65.6 percent.  A similar pattern is shown in Figure 4 
for	joint	filers,	for	whom	mean	AGI	declined	from	$2.2	
million to $1.7 million between 1987 and the death of 

* Dollar amounts are unweighted and in constant dollars.

Figure 3—Income Distribution in 1987 and Year Prior to Death, Single Filers*
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one	partner.		Median	AGI	for	joint	filers	declined	nearly	
60.0 percent, from almost $930,000 to about $370,000, 
while AGI for those in the 90th percentile declined less 
over the period, about 35.0 percent.  

Figures 5 and 6 decompose AGI into major compo-
nents for selected years over the 7-year period preceding 
a	panel	decedent’s	year	of	death	[10].		For	single	filers,	
overall, median values for wages, taxable interest and 
dividends, and income from noncorporate businesses 
decreased as individuals aged.  Median values for tax-ex-
empt interest, derived from investments in bonds issued 
by State or local governments, also declined, overall, 
for the 7-year period shown in Figure 5.  However, for 
wealthier decedents, those with $5 million or more in 
gross assets at death, income from tax-exempt bonds 
increased over this period.  For all single decedents, tax-
able Social Security, combined with pension and annuity 
income, increased over time, while gains from sales of 
capital assets were relatively stable.

Figure 6 shows that, while the income distributions 
for	single	and	joint	filers	exhibit	similar	downward	shifts	
over time, the sources of these declines differ between 
the	two	groups.		For	joint	filers,	income	from	wages,	as	
well as interest and dividends from taxable investment 
assets, declined over the 7 years preceding the death of 

one spouse, but income from most other sources was 
either stable or increased over this period.  Most notable 
was the relative stability in tax-exempt income for joint 
filers,	overall.		For	the	wealthiest	joint	filers,	however,	
those where one spouse owned $10 million or more in 
gross assets at death, tax-exempt income increased by 
40 percent over the period examined.  For these wealthy 
filers,	income	from	noncorporate	businesses	increased	
by almost 27.0 percent over time.  

Figures 5-6 showed that, as panel members aged, the 
share that wage income contributed to AGI decreased, 
while the patterns of change in income from other 
sources	varied	somewhat,	depending	on	filing	status	and	
wealth class.  It has been noted that the realization of 
income derived from assets is a more or less voluntary 
event.  Wealthy individuals, those for whom return on in-
vestments makes up a relatively large source of income, 
have the ability to allocate their portfolios in order to 
take maximum advantage of preferences built into the 
tax	code,	to	reduce	risk,	and	to	vary	income	significantly	
according to their own consumption needs.  According to 
Steuerle (1985), the voluntary nature of capital income 
recognition	implies	that	“taxes	paid	and	benefits	received	
will vary tremendously among persons in fairly identical 
circumstances.”  He goes on to state that, because of the 
voluntary nature of income recognition, using income 

* Dollar amounts are unweighted and in constant dollars.

Figure 4—Income Distribution in 1987 and Year Prior to Death, Joint Filers*
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  Figure 6—Changes in Income Composition, Selected Years Prior to Death, Joint Filers*

* Dollar amounts are unweighted and in constant dollars.
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Figure 5—Changes in Income Composition, Selected Years Prior to Death, Single Filers*

* Dollar amounts are unweighted and in constant dollars.
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as	a	classifier	in	statistical	analyses	will	be	inaccurate	
or misleading for many purposes.  

For many decedents, income reported on a tax return 
in the year prior to death will be closely correlated with 
the	assets	reported	on	an	estate	tax	return	filed	at	death	
[11].  It is, therefore, possible to estimate rates of return 
on various asset classes.  Rates of return are estimated 
as income attributable to each class of assets as reported 
on Form 1040 and its attachments in the last year prior 
to death, divided by the value of those assets reported on 
Form 706.  Figure 7 shows median values for estimated 
rates of return for all capital assets, for investment assets 
that produce taxable income, and for tax-exempt bonds.  
For	single	filers	with	gross	assets	under	$1	million,	the	
rate of return on capital was 4.27 percent.  This rate 
declined for individuals in higher wealth classes, and 
was	just	2.13	percent	for	single	filers	with	$10	million	
in gross assets at death.  Likewise, rates of return on 
investments that produced taxable interest or dividends 
declined with gross asset size.  It is interesting to note, 
however, that the rate of return on tax-exempt invest-
ments	was	fairly	stable	 for	single	filers,	 regardless	of	
their wealth.  These trends, when combined with those 
seen previously in Figures 5 and 6, suggest a systematic 
reordering of the portfolio, over time, favoring tax-ex-
empt income sources over those that produce taxable 

income.		For	joint	filers,	rates	of	return	show	a	similar	
pattern across wealth classes, although there was more 
variation across wealth categories for rates of return on 
tax-exempt	bonds	than	was	seen	for	single	filers	[12].		

Conclusion

Panel data consisting of income reported by wealthy 
taxpayers provide important opportunities to study 
the ways in which income changes over time.  When 
paired with wealth data from Federal estate tax returns, 
the resulting data set provides a rare opportunity to 
learn more about the relationship of wealth to realized 
income, which is an important consideration in many 
public policy debates, and about changes in income 
that occur as people near the ends of their lives.  These 
data, however, present many challenges to researchers, 
a number of which have been explored in this paper.  
Techniques for dealing with problems that arise due 
to the longitudinality of the data set, differences in re-
porting units on income and estate tax returns for joint 
filers,	the	dynamic	nature	of	investment	portfolios,	and	
many other challenges must be explored before the full 
potential of the FPDD can be realized.  However, the 
preliminary statistics presented in this paper suggest that 
there is much that can be learned by addressing these 
issues using even the most basic assumptions.  

Endnotes

  [1] Dependents are not included in the analysis pre-
sented in this paper.

		[2]		 Estate	tax	returns	filed	prior	to	1994	were	identified	
by matching panel member SSNs to the IRS Master 
File.  Due to the limited amount of estate tax data 
available from the Master File for these pre-1994 
decedents, they are not included in the FPDD.

		[3]		 Estate	 tax	 returns	were	 filed	 for	 an	 additional	
57 panel members, but they were missing key 
documentation or schedules at the time of SOI 
processing and had to be rejected.

		[4]		 Visitors	to	the	panel	were	not	included	in	the	final	
dataset since income data were only available for 

u

uFigure 7—Selected Rates of Return One Year Prior 
to Death, by Size of Gross Assets

Asset Size of gross assets Single Joint

All 2.74 2.84

Under $1 million 4.27 4.31

$1 million, under $5 million 3.27 3.52

$5 million, under 10 million 2.40 2.48

$10 million or more 2.13 1.85

All 2.92 2.15

Under $1 million 3.83 3.01

$1 million, under $5 million 3.08 2.37

$5 million, under 10 million 2.58 2.20

$10 million or more 2.65 1.77

All 5.72 5.12

Under $1 million 5.77 5.72

$1 million, under $5 million 5.84 5.49

$5 million, under 10 million 5.72 5.17

$10 million or more 5.65 4.40

Return on 
capital assets

Return on 
taxable bonds 
and stocks

Return on tax-
exempt bonds
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the period of time that they were associated with 
an original panel member.   

  [5]  Missing returns can occur either because a taxpayer 
was	not	required	to	file	in	a	given	year,	or	because	
of an error in reporting a taxpayer’s SSN.  The latter 
occurred mainly in the case of secondary SSNs in 
the 1987 panel.  After the period covered by this 
study, the IRS implemented processing improve-
ments that have reduced these types of errors.  

		[6]		 The	category	“single”	 includes	filers	who	were	
unmarried, widowed, and married individuals who 
elected	to	file	separately	since	the	data	on	these	
returns	should	reflect	income	attributable	to	one	
individual.   

  [7]  The year prior to death is used because a return 
filed	for	the	year	of	death	would	usually	reflect	
income earned during only that portion of the year 
during which a decedent was alive.

  [8]  “Seven years” is used since that is the maximum 
number of full-year income tax returns that would 
be available for 1987 panel members who died 
in 1994.  

  [9]  Values were converted to constant dollars using 
the GDP chain-type price index.  Source: Bureau 
of Economic Analysis.

[10]		 Only	those	panel	members	whose	filing	statuses	
did not change over the 7 years preceding their 
years of death are included in Figures 5 and 6.

[11]  In some cases, assets that generated income re-
ported in the year prior to death may have been 
sold and the proceeds either consumed or invested 
differently prior to reporting on Form 706; how-
ever, no attempt to adjust the data was made for 
this analysis.

[12]  For joint filers, asset values reported for the 
decedent spouse were doubled in an attempt to 
approximate the full value of a married couple’s 
asset holdings.  This approach will likely overstate 
the combined asset holdings, in aggregate, causing 
rates of return to be understated somewhat.
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F or most of its 90-year history, the main func-
tion of the Statistics of Income (SOI) Division 
has been the collection of information for the 

Department of Treasury and Congress [1]. One of the 
beneficial	practices	of	a	Federal	statistical	agency,	ac-
cording to the Committee on National Statistics, is its 
continual development of more useful and timely data, 
including operational statistics, the latter objective even 
noted in Internal Revenue Code 6108(a) [2]. SOI has 
sought ways to improve the quality and timeliness of 
its	 tax	return	 information	while	fulfilling	 the	requests	
of its primary customers. Over time, it incrementally 
improved not only the statistical abstraction of infor-
mation from Federal tax returns, but also the statistical 
operations associated with producing such information. 
Moreover, among its various processing tasks, SOI 
identified	the	monitoring	of	its	samples	of	returns	from	
the point of selection to the point of delivery back to 
the warehouse storage facilities as an essential part of 
its strategy in achieving its mission.

Because SOI functions within a larger bureaucracy, 
one of its recurring challenges is coordination among 
the different staffs laboring at tasks at different phases 
of	the	SOI	workflow	process	[3].	For	example,	in	May	
2006, the Internal Revenue Service (IRS) awarded a 
contract	to	a	private	company	to	manage	the	files	func-
tion at the IRS submission processing centers [4]. This 
company will store and maintain all the paper docu-
ments	 taxpayers	file	at	each	center	 for	an	established	
period after the completion of IRS “pipeline” process-
ing. It will ship the documents to one of the Federal 
Records	Centers	 at	 the	 end	 of	 this	 period,	 and	 fulfill	
requests	from	IRS	offices	that	need	to	examine	tax	and	
information returns for either administrative or statisti-
cal purposes [5]. SOI is one of the major “downstream” 
requesters of these stored documents since it produces 
its	mandated	 annual	 income,	financial,	 and	 tax	 infor-
mation from weekly samples of Federal tax and infor-
mation returns, which the IRS usually processes during 
the previous week [6].

A concern this particular competitive sourcing ini-
tiative raises is whether SOI will control within 2 weeks 

of selection all of the documents in its weekly samples, 
and not lose some of the returns to other IRS functions 
requesting by chance the same return [7]. On the other 
hand, the company may introduce new inventory meth-
ods	or	delivery	 techniques	with	benefits	 to	SOI,	such	
as interchanges of record information about the pulled 
returns with one of the SOI databases. Of course, this is 
not	the	first	time	SOI	has	faced	a	challenge	associated	
with changes in the way the IRS accepts, controls, and 
processes tax and information returns. Differences in 
objectives frequently occur between “pipeline process-
ing” and “postpipeline processing” functions, such as 
SOI. Ironically, the company will return to an earlier 
mode of operation SOI replaced through its Total Qual-
ity Organization (TQO) initiatives in the early 1990s, 
shipping “cycles” (or large groups) of returns to the 
SOI	edit	sites,	instead	of	program-specific	workgroups	
that	 SOI	 units	 in	 files	 supplied	 to	 the	 SOI	 edit	 unit	 
editors [8].

This paper is a case study of the infrastructure SOI 
developed to monitor its samples and deal with unex-
pected events in a bureaucratic setting. It focuses on 
what happens after the SOI sampling programs select 
returns for a project (or study). In addition, it provides an 
account of the SOI efforts to improve the monitoring of 
its samples of Federal tax and information returns, part 
of a “Golden Age” in SOI history. Can regular monitor-
ing of the returns in the various samples decrease the 
length of time SOI controls returns, or reduce the length 
of	time	it	finds	missing	returns	in	the	samples,	or	reduce	
the length of time it delivers data to its primary custom-
ers? Based on interviews, participant observations, doc-
uments, and physical information, the paper shows how 
SOI operating procedures and information databases, 
and coordination among different staffs, monitor and 
verify	the	control	and	timely	processing	of	specific	sets	
of	returns.	In	the	first	section	of	the	paper,	we	provide	
a brief historical perspective about SOI consolidation 
efforts and technological advances. Then, we describe 
the	SOI	workflow	process	in	the	second	section.	In	the	
third section, we spell out some of the SOI statistical 
operations and procedures that systematically monitor 
the	SOI	workflow	process.	The	fourth	section	looks	at	
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the application of management and statistical concepts 
to	the	development	of	the	SOI	workflow	process;	and,	
then,	we	conclude	with	several	findings	and	remarks	on	
how SOI is shaping its future.

 Consolidation of Work and 
Technological Advances

SOI performed most of its preliminary statistical 
abstraction, data transcription, and error correction in 
National	Office,	district	offices	(after	World	War	II	for	
a period of time before the expansion in the number of 
service centers across the country), and the few service 
centers in operation, but moved operations to the cen-
ters as their number increased. Service centers not only 
processed but also began storing the paper returns in 
support of other IRS programs, such as Examination, 
before	final	consignment	to	one	of	the	Federal	Records	
Centers. IRS personnel at the different SOI sites, who 
were available to edit SOI samples once regular pipe-
line processing work subsided or ended, used paper edit 
and error register sheets to abstract information from 
the	 returns,	 while	 National	 Office	 analysts	 produced	
aggregate statistics and tables from the perfected data 
for customers [9].

In the 1980s, under the direction of Fritz Scheuren, 
SOI adopted the Total Quality Organization (TQO) 
methodology to improve its operations at the service 
centers	 and	 in	National	Office,	 primarily	 in	 response	
to	a	request	from	analysts	in	the	Office	of	Tax	Analysis	
(OTA) and Joint Committee on Taxation (JCT) for ear-
lier deliveries	of	SOI	data.	SOI	analysts	identified	vital	
activities and formed cross-functional teams to work on 
these issues. The staffs in the different branches in SOI 
National	Office	looked	for	ways	to	develop	work	pro-
cesses and data systems that could improve the quality 
and timeliness of the tax return information they pro-
duced for each of the SOI programs within the bound-
aries of regular IRS pipeline processing. The research 
included traveling to the service centers to meet with 
employees for the purpose of identifying, prioritizing, 
and recommending improvements in SOI control and 
processing of returns in its various samples [10].  Ac-
cording to Scheuren, “[t]he focus on process quality 
that Deming and Juran urge, while not really new, is 
having a revolutionary impact on us, especially in its 

emphasis on continuous improvement or “Kaizen,” as 
the	Japanese	call	 it….	Examples	 [include]	more	flex-
ible and dynamic approaches to data capture, cleaning, 
and completion” [11].

From this analysis, Scheuren and others on his 
staff hypothesized that consolidating SOI editing op-
erations at particular IRS service centers would free up 
resources	(staffing,	travel,	and	training),	improve	edit-
ing (abstraction) productivity and quality, and enhance 
its presence as a data producer within the community of 
Federal	statistical	agencies.	In	May	1990,	SOI	notified	
the now ten IRS service centers that it planned to con-
solidate edit processing for the SOI Corporation and 
Individual Tax Return programs in six service centers 
[12]. Four centers would only pull, control, and ship re-
turns to one or more of the six processing centers (down 
to	five	in	1992)	[13].	In	general,	the	number	of	returns	
service centers processed for all of the SOI studies was 
much smaller than the volume of returns the centers 
processed for tax liability, administrative, and infor-
mational purposes. Competing with other functions 
for skilled tax examiners to work the SOI programs at 
the centers, as well as arguing about what IRS or SOI 
programs	merited	attention	first,	were	frequent	occur-
rences before the consolidation initiative.

Concentrating the editing function at six service 
centers led to the formation of additional units of SOI 
editors (former tax examiners and data transcribers) at 
some of these sites and the growth in the volume of 
available work at all the sites [14]. Most of these edit 
units were now dedicated to processing only the returns 
in SOI samples year round. SOI ensured the volume in 
each	of	the	six	processing	centers	was	sufficient	to	sup-
port an SOI edit unit working full-time on SOI work. 
Besides the formation of SOI edit units, SOI created 
“SOI control units,” at least in name, in each of the ten 
centers’	files	warehouses	to	support	its	edit	units.	After	
regular pipeline processing, each of the centers stored 
for about 2 years its portion of the total population of 
returns	 that	 filers	 mailed	 each	 year.	An	 SOI	 control	
unit consisted of a small group of service center em-
ployees, usually working in a miscellaneous unit in the 
files,	whose	major	 tasks	were	the	control,	processing,	
and shipping of returns in SOI samples to the SOI edit 
units	and	refiling	returns	after	edit	units	completed	pro-
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cessing these returns. SOI discovered a truly dedicated 
group	of	employees,	who	shared	their	files	expertise	and	
experience	in	searching	for	and	finding	missing	returns,	
as	well	as	assisting	National	Office	analysts	in	finding	
additional information about certain returns [15].

While	 one	 National	 Office	 cross-functional	 team	
was working on the consolidation initiative, other teams 
were developing new online computer applications and 
installing new hardware at the centers, solely dedicated 
to SOI processing. Beginning in 1991, SOI procured 
and installed hardware upgrades and telecommuni-
cation equipment for support of online editing, at the 
Cincinnati and Ogden service centers, and in National 
Office.	Telecommunication	lines	connected	online	ter-
minals for the editors in each of the processing centers 
to the SOI minicomputers in Cincinnati and Ogden, 
designated SOI minicomputer hub sites. The integra-
tion of editing, data transcription, and error correction 
into a single operation with these online terminals began 
with several smaller SOI studies (Partnerships, Exempt 
Organizations, Controlled Foreign Corporations, For-
eign Tax Credit, and Individual Sales of Capital Assets) 
and expanded to the major Corporation and Individual 
Returns	 programs.	 Online	 editing	 brought	 significant	
improvements in productivity, timeliness, and quality 
because editors spent much less time waiting for night-
ly batch-mode feedback on errors and corrections and 
much more time processing completely sets of the same 
type of return [16]. Groups of tax examiners became 
experienced	subject-matter	experts	on	how	filers	com-
pleted forms, as well as knowledgeable about the con-
tent of the forms in question. Having honed their skills 
from frequent and consistent editing of a large number 
of the same type of return, they accelerated processing 
and	improved	the	quality	of	the	final	product—perfect-
ed and more meaningful return information [17].

The availability of returns to edit on a continuous 
flow	basis	was	an	important	concern	now	that	service	
centers increased the size of their SOI edit staffs, and in 
some cases improved the grade structure, to deal with 
the increase in the volume of work. Would the edit units 
have enough work? Would the editors’ work habits out-
pace the delivery of new returns to process? Would 
waiting for work adversely affect the earlier training 
and skill levels of the editors? Managers in the SOI edit 

units	identified	one	of	the	requirements	for	successful	
execution of the new plan as timely delivery of a suf-
ficient	amount	of	returns.	Timely	delivery	of	work	sup-
ported the efforts of centers to commit employees to 
SOI projects the entire year, so long as SOI work was 
available.	Consequently,	another	National	Office	team	
developed an online database application, called the SOI 
Automated	Control	System	(SOIACS),	to	monitor,	first	
the shipment of 1040 returns, then all returns [18]. A 
next-generation version of the application, now named 
STARTS, would facilitate the “systematic control” of 
1040 returns some service centers would ship to other 
centers for edit processing, as well as the movement of 
returns between an edit unit and control unit within the 
same center [19]. Subsequently, when operational, the 
application had a computer terminal and printer located 
in	the	files	of	each	of	the	ten	service	centers	and	the	edit	
units [20]. It connected the control units with the edit 
units	and	both	with	National	Office.

Soon after implementation of the application, an edit 
unit	manager’s	need	to	know	what	returns	to	edit	first	
(i.e., the editing priority) surpassed the need for timely 
delivery of returns because SOI began committing to 
deliver	data	to	its	customers	by	specific	dates	during	the	
year. The centers needed meaningful information to an-
swer this and other questions. For example, a question 
an SOI edit unit manager might raise is, “Which returns 
in	the	cycle	(weekly	pull)	should	we	process	first?”	But	
a	new	SOI	files	clerk	might	ask,	“If	another	IRS	func-
tion has the return, can I pick another one on the same 
shelf (for SOI)?” SOI editors might ask, “What returns 
do I edit?” or “Where do I move this money amount?” 
An	SOI	National	Office	statistician	might	ask,	“Can	we	
ask the centers to locate the missing returns?” An SOI 
economist might ask, “Can the centers edit more of the 
Type XYZ returns (for example, Sample Code 20 or 
Cross-Sectional returns) before the deadline?” Finally, 
an SOI scanner might ask, “How do I replace the illeg-
ible page?” These questions demanded better monitor-
ing not only of the physical location of the returns while 
en route to the edit units, but also better visualization of 
the metainformation of the returns—i.e., information 
that describes the information about a sampled return 
[21]. Now that SOI created an IT backbone to support 
its	workflow	process,	managers	asked	for	more	details	
about what actually was in a cycle of returns [22].
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	SOI Workflow Process

Compared to IRS administrative processing, which 
captures	some	information	from	all	of	the	filed	tax	re-
turns, SOI studies collect much more information from 
samples of returns through its transcription and editing. 
SOI editors add value to the administrative record in-
formation the IRS collects. This additional value makes 
it imperative to control and monitor the samples and 
continuously	improve	the	entire	SOI	workflow	process	
to guarantee consistency over time. Similarly, infor-
mation about the processing tasks adds value to the 
corresponding	returns	that	flow	through	the	workflow	
process. The results of the efforts of the TQO teams in 
collecting information at each phase of the process about 
the processing tasks; the performers of these tasks; the 
relative order of the tasks; the possible synchronization 
of	some	of	the	tasks;	the	flow	of	information	in	support	
of the tasks; and the tracking of the tasks, was not only 
a better understanding of the process, but also a cache 
of aggregated information.

The	SOI	workflow	process	is	the	general	term	for	
the movement of samples of “documents” or “con-
tainers of information” (e.g., paper returns, electronic 
records, and digitized images), through the SOI sam-
pling, controlling, and editing processes [23]. Each 
of these three major subprocesses, or phases, relate 
to	 specific	 tasks	 that	 personnel	 at	 the	 service	 centers	
and	in	National	Office	execute	to	produce	statistics	for	
publication and delivery to customers. Both operating 
procedures and computer systems support the efforts 
of the people involved at each of the phases of the pro-
cess. This convergence of procedures, databases, and 
people forms an underlying base, or infrastructure, for 
the	functioning	of	the	workflow	process.

The process begins when a project analyst adds a 
new tax or information form to an existing study or ini-
tiates a new study with an SOI customer. After the SOI 
sampling programs at the IRS computing center, or the 
Ogden Submission Processing Center, selects returns 
for a particular study, the programs then create sets of 
output	files	for	loading	into	both	IRS	and	SOI	databas-
es [24]. Phases of the process include selecting docu-
ments, pulling documents, monitoring the success rate 
of	pulling	documents,	finding	missing	returns,	storing	

documents, scanning documents, photocopying docu-
ments, ordering documents, shipping documents, edit-
ing documents, managing documents in the edit unit, 
and	releasing	documents	back	to	files.	The	process	in-
volves constant change and update. For example, under 
the new competitive sourcing initiative, the SOI edit 
units at the centers will assume tasks the SOI control 
units once performed after the contractor begins man-
aging the Files function at the centers. The infrastruc-
ture alleviates some of the problems associated with 
such a change.

	SOI Monitoring Operations

The Statistics of Income Automated Return Track-
ing System (STARTS) is the framework for management 
of returns and digitized records as they move through 
the	various	phases	of	the	SOI	workflow	process	at	the	
centers. This process control system is a structured set 
of related components (people, procedures, processes, 
subsystems, databases, reports, etc.) SOI established 
to accomplish the major task of monitoring its samples 
from the point of selection to the point of delivery back 
to	files.	STARTS	(the	system)	consists	of	online	database	
applications, as well as standardized business processes, 
work instructions, forms, and reports, all of which give 
the	different	staffs	at	the	centers	and	in	National	Office	
increased visibility into the operations at the centers.

The SOI sampling program, sample selection 
sheets, document chargeout forms, pulled returns, 
shelved returns, and shipped workgroups of returns, 
comprise part of a “signal” system for securing and 
delivering the correct returns in an SOI sample to the 
right service center for processing at the right time. The 
other part is the database, developed for predictable 
and manageable record keeping.

Database Management System

Borrowing from manufacturing operations, which 
schedule	and	track	the	flow	of	materials	through	a	pro-
cess, STARTS (the database application) gives online 
access to real-time data about one return, or a group of 
returns (cycles, workgroups, scanned sets, photocopied 
sets, etc.). Combining aspects of transaction process-
ing, management information, decision support, and 
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expert systems, the database is a collection of infor-
mation about SOI samples, which users manage and 
utilize when making decisions about planning, orga-
nizing, and controlling the processing of the samples 
[25]. Top-level managers are concerned with planning: 
Will the center meet the corporation program 75-per-
cent cutoff on the scheduled date? Middle-level man-
agers are concerned with organizing: Can the editors in 
Unit 5 handle the consolidated 1120 returns? Front-line 
managers are concerned with controlling: Are the edi-
tors; documents, scanned images, or electronic records; 
and inventory and edit applications available to begin 
editing the corporation returns?

Convergence of Aggregated Information

Because STARTS (the database application) stores 
sample information and provides a traceable record of 
user transactions or interchanges with that informa-
tion, one example of its functioning is worth noting 
here. A section of the Internal Revenue Manual (IRM) 
notes the date the centers must supply transcribed and 
edited	1040	 return	 information	 to	National	Office	 for	
“Advance Data” delivery to OTA and JCT. One year 
earlier, mathematical statisticians produced the sam-
pling	 specifications	 for	 the	 computer	 specialists	 who	
wrote the programs that selected returns for the sample. 
Among the possible inputs, the application reads and 
stores return information that the sampling program at 
the IRS computing center loaded into the SOI sample 
control	files,	or	the	“One-Week	Followup”	date	a	clerk	
entered in the STARTS cycle control screen. The appli-
cation applies a set of logic statements (or SOI business 
rules) to the loaded records, such as, if the Level Code 
is equal to “1,” or the Continuous Work History Study 
(CWHS) Code is equal to “1,” assign the return to the 
“Cross-Sectional” category, or if the sample code of 
that	return	is	a	specific	value	within	a	certain	range,	as-
sign it, as well, to an additional category, called “Com-
plex” edit. Possible outputs include the application 
generating and displaying inventory totals, such as the 
number of “Complex Cross-Sectional” returns, which 
are available for the SOI edit unit manager to order, or 
permitting	the	placement	of	a	user-defined	set	of	these	
“Complex Cross-Sectional” returns into a STARTS 
editor workgroup.

	Application of Management and 
Statistical Concepts

A “Golden Age of SOI Development” occurred at 
the end of the 1980s and the beginning of the 1990s 
in	 SOI	 National	 Office	 and	 the	 centers,	 which	 re-
sulted in an infrastructure that is still in place today. 
Inhouse “quality” teams of economists, management 
and program analysts, statisticians, center managers, 
editors, clerks, and information technology specialists 
collaborated in the design, development, application, 
and maintenance of this infrastructure. Based on the 
research of American experts such as Frederick Win-
slow Taylor, Frank Bunker Gilbreth, Walter Shewhart, 
and of the War Department’s Training Within Industry, 
SOI learned that continuous incremental improvements 
benefit	an	organization	[26].

Value

SOI increased the value of the tax returns in its 
samples not only for its customers, but also for its sup-
pliers at the service centers (see Table 1).

Table 1—Added Value At Each Phase of Workflow 
Pull and control documents Document information 

Location information 
Cycle information 
Pull information 

Store documents Warehouse information 
Center information  
Time information  
Processing information 

Order and ship documents Return information 
Project information 
Edit priority information 
Edit site information 
Workgroup information 
Center information 
Complexity information 
Deadline information 

Process documents Edit information 
Scan information 
Photocopy information 
Critical case information 
Split-screen information 

Release documents Quality review information 
Refiling information 
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SOI assigned information, based on descriptive 
statistics from different operational sources, to each 
return record to expedite processing. Identifying and 
storing information about a return, its edit status, and 
its extra-processing requirements in a database made 
the	fulfillment	of	requests	for	any	of	 this	 information	
much easier. For example, the set of all possible out-
comes of an operation at a particular phase of the pro-
cess determined whether a return was released immedi-
ately after editing, instead of scanned. Consequently, a 
supply chain concept replaced the original “shipping” 
concept. The SOI infrastructure moved not only docu-
ments, electronic records, or digitized images, but also 
information from unit to unit, center to center, head-
quarters	to	field	office.

Complexity

The purpose of the process control system shifted 
from one where the principal activity is moving docu-
ments from one center to another to one where the activ-
ity is helping the centers meet the program completion 
deadlines,	which	National	Office	 analysts	 set	 to	 pro-
vide timely tax return data to its customers. SOI man-
aged complexity, sometimes even reducing it, when 
it assigned returns in the various project samples to a 
series of categories. Combinations of these categories 
made it possible for the managers to break down the 
amorphous cycles of returns into pieces that are easier 
to control and work with. Since it is necessary to edit 
some returns before others, the STARTS application 
provided	the	capability	to	order	specific	sets	of	returns,	
placing	 them	 in	 specific	 sets	 of	 editor	 workgroups.	
These combinations supplemented the strata the math 
statisticians created for sampling.

Standardization

The STARTS application allows SOI to standard-
ize certain processing tasks across the projects and the 
service centers. It acts as a decoder that helps personnel 
in	National	Office,	the	SOI	edit	units,	and	the	SOI	con-
trol units to understand each other’s variants of sample 
processing. The corresponding system makes these dif-
ferent actors work together through the interchange of 
information. They have to follow certain rules to avoid 
miscommunication and guarantee that both the SOI 

edit units and SOI control units know in advance from 
the information in the database application what each 
should provide as updates or requests and what each 
should expect back as responses. When an edit unit or-
ders 20 editor workgroups in which each workgroup 
contains ten “Priority 1” corporation returns, it expects 
the SOI control unit to assemble and send 200 such re-
turns	for	distribution	to	five	editors.	Because	the	SOI	
control unit marks a return as “missing” in STARTS if 
it does not control that return, only what is in its control 
is available for the SOI edit unit to order in STARTS.

Kaizen

The consolidation efforts changed SOI into an or-
ganization that continues to apply time-compressed, 
action-oriented improvement methods to its various 
projects. Many of the components and functions of the 
STARTS application were the result of the energy gen-
erated through users’ participation, creativity, and the 
pressure to produce rapidly tangible results.

	Conclusion

The formation of cross-functional teams at the 
centers,	and	between	the	centers	and	National	Office,	
and the development of a monitoring system and cor-
responding just-in-time electronic database application 
(i.e., STARTS) brought a very strong focus on the en-
tire	SOI	workflow	process.	No	function	could	make	a	
change that affected another function unless they had 
buy-in from that function. Managers, editors, clerks, 
statisticians, economists, analysts, and computer spe-
cialists looked at samples from beginning to end, not 
just a particular phase. The teams monitored the sta-
tus	of	returns	as	they	“flowed”	through	the	workflow	 
process.

When the private company begins managing the 
IRS	 files	warehouses	 at	 the	 centers	 in	 late	 2006	 and	
sends	 the	first	batch	of	pulled	 returns	 to	 the	SOI	edit	
units,	days	before	the	arrival,	SOI	National	Office	and	
its SOI edit units across the country will know what 
returns the SOI sampling programs selected for the 
various studies. Unfortunately, the company will not 
exchange electronic records with STARTS per the con-
tract. In addition, SOI will no longer have a presence 
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in	the	files	warehouses	per	the	IRS	performance	work	
statement.	SOI	personnel	both	in	National	Office	and	at	
the edit units at the centers will not know the contents 
of the shipments until the SOI edit units can open the 
boxes or scan the carts. If the company transmitted an 
electronic version of the shipment manifest for loading 
into the STARTS database application, then the SOI 
edit units might consider shelving the returns in work-
groups for easy distribution to the editors, instead of 
storing	in	a	traditional	files	manner	(e.g.,	cycle	or	type	
of return).

In the future, if an SOI edit unit runs low on work, 
the STARTS database application could recognize this 
situation in the inventory and order more. Because this 
application stores record information for each return in 
the sample, whether processed as paper, an electronic 
record, or a digitized image, SOI can easily repurpose 
the record content, making it accessible from a variety 
of devices.

The database application increased the availabil-
ity and use of data, consequently helping to improve 
each center’s decisionmaking and visualize, synchro-
nize,	 and	 automate	 phases	 of	 the	 workflow	 process.	
The power in STARTS reports and screens is that they 
display accurate, consistent, and timely data. SOI built 
a reporting system so that managers know in real time 
how they are meeting the needs of SOI customers. The 
application replaced transactions done by phone, fax, 
or mail. It replaced collecting and storing data manu-
ally in their own way.

In the late 1980s, SOI developed online data entry 
and	 verification	 applications,	 which	 linked	 IRS	 pro-
cessing sites across the country through a network of 
computer terminals and databases. It applied this infor-
mation network concept to the control and monitoring 
of its samples. This connectivity and the value-added 
information embedded in each sample record allowed 
SOI personnel to monitor the status of each tax and in-
formation return as it moved through the different phases 
of	the	SOI	workflow	process	from	the	files	warehouses	
to its edit units and back. Incorporating a wide range of 
information about the sampling criteria, the study ob-
jectives and requirements, and the logistical demands 
associated with processing enhanced the meaning of 

the samples to the centers (suppliers) and National Of-
fice	analysts	(producers)	and	assured	an	acceleration	of	
the	collection	of	data	and	the	delivery	of	the	final	prod-
ucts to SOI customers. Monitoring daily the number of 
missing and available returns can increase the likeli-
hood the quality of the data is high [27].
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	Endnotes

	 [1]	 In	addition	to	the	Office	of	Tax	Analysis	and	the	
Joint Committee on Taxation, another important 
customer is the Bureau of Economic Analysis.

 [2] National Research Council (2005), Principles 
and Practices for a Federal Statistical Agency, 
Third Edition, Committee on National Statistics, 
Margaret E. Martin, Miron L. Straf, and  
Constance F. Citro, editors, Division of  
Behavioral and Social Sciences and Education, 
The National Academies Press, Washington, DC,  
p. 25. In addition, see 26 USC Sec. 6108,  
Statistical publications and studies, which  
describes the SOI mandate.

	 [3]	 The	SOI	workflow	process	is	the	interchange	
of documents, record information, and tasks 
through the SOI sampling, controlling, and edit-
ing processes.

 [4] As a stakeholder and customer, SOI hopes to 
meet with company representatives and the IRS 
Files	Government	Project	Management	Office	
to discuss pertinent issues about its samples. 
After announcing the awarding of the contract, 
the IRS announced two positions, one a senior 
manager position, the other a supervisory quality 
assurance specialist. While a company assumed 
responsibility	for	the	work	performed	in	files,	it	
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is necessary to manage the relationship between 
this	company	and	other	IRS	offices	and	check	
the quality of the company’s work, etc.

 [5] The company will operate at the IRS facilities in 
Methuen, MA, Fresno, CA, Norcross, GA, Aus-
tin, TX, Ogden, UT, Kansas City, MO, Florence, 
KY, and Philadelphia, PA. The records centers 
are part of the National Archives and Records 
Administration. They store the records of a Fed-
eral agency.

 [6] In addition, SOI is a major requester of elec-
tronic	records,	which	include	electronically-filed	
records.

 [7] Competitors for documents include four dif-
ferent business operating divisions: Large and 
Mid-Size Business (LMSB), Small Business/
Self-Employed (SB/SE), Wage and Investment 
(W&I), and Tax-Exempt and Government Enti-
ties (TEGE).

 [8] The acronym “TQO” refers to Total Quality 
Organization, a commitment on the part of an 
organization to advocate quality and continuous 
improvement in all its tasks.

 [9] The general term, “regular pipeline processing,” 
refers to the actions of IRS workers who handle 
tax and information returns from the time the 
documents	first	arrive	at	an	IRS	service	center	
through the posting of information at the IRS 
Computing	Center	and	finally	the	shelving	of	the	
documents	in	the	files	area.

[10] SOI wove supplier and customer data into the 
process improvements. It captured any available 
information relevant to the SOI projects at the 
centers.

[11] Scheuren, F. (1991), Comment on “The Federal 
Statistical System’s Response to Emerging Data 
Needs” by Jack E. Triplett, Journal of Economic 
and Social Measurement, IOS Press, Volume 17, 
Numbers 3, 4, p. 190.

[12] The 1990 plan for distributing work to the re-
maining six processing centers had Andover and 
Brookhaven centers shipping their individual 
and corporation returns to the center in Ogden. 
Memphis shipped its individual returns to the 
Austin center and corporation returns to the 
center in Cincinnati. Philadelphia shipped both 
individual and corporation returns to Cincinnati. 
The Atlanta, Fresno, and Kansas City centers 
continued to process their samples of individual 
and corporation returns. Doug Shearer and Dan 
Trevors coordinated the plans and issued regular 
status reports to keep management informed of 
the activities involved in this consolidation. For 
the Individual program, the consolidation was 
effective beginning with the Cycle 9053 End-of-
Year Tickler (EOYTICK) processing for the Tax 
Year (TY) l989 Study and continued with the 
TY 1990 Study, which began with the selection 
of returns in Martinsburg Computing Center 
(MCC) Cycle 9104 (January 1991). Consolida-
tion of the Corporation program began earlier 
with the TY 1989 study commencing only in 
Atlanta, Austin, Cincinnati, Fresno, Kansas City, 
and Ogden in August 1990. The nonprocessing 
centers began shipping their corporation returns 
to	the	edit	sites	later	in	the	year	per	SOI	notifi-
cation. Beginning in 1992, the edit processing 
of the returns in the Individual and Corporation 
programs	resided	in	only	five	centers,	when	SOI	
discontinued editing at the Fresno center.

[13] The centers were located in Andover, MA, 
Brookhaven, NY, Memphis, TN, and Philadel-
phia, PA. A team of managers from National Of-
fice	traveled	to	these	centers	to	discuss	issues	and	
concerns of the managers, editors, and clerks.

[14] SOI editors abstracted information from returns, 
including moving some information to the cor-
rect	fields	on	the	returns.	Tax	examiners	in	non-
SOI units at the centers checked and prepared 
for	data	transcribing	those	fields	on	the	returns	
the IRS deemed important in determining tax 
liability.
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[15] Clerks in the SOI control units did not edit 
returns. Instead, they pulled returns, looked for 
missing returns, photocopied returns, scanned 
returns, packaged returns, and shipped returns to 
list just some of their duties. One manager com-
mented: “I am a Unit Supervisor in a large unit. I 
have IMF SOI, AIMS, Cycle, Quality Review … 
as	well	as	pulling	and	refiling.	SOI	is	just	a	part	
of this unit. We have maintained a record of high 
accuracy and very few missing documents for a 
few years. This [is] … due to the integrity, de-
pendability, and dedication of the staff assigned 
to SOI. They have accomplished a lot with 
very few people. So, what STARTS means to 
me	is	reflected	in	what	the	staff	commented	on	
…	If	they	are	happy	and	satisfied	and	feel	that	
STARTS helps them perform their duties more 
efficiently	and	accurately	due	to	the	increased	
speed and easier access, then I am happy. If they 
feel that STARTS helps them maintain a low 
missing	record,	and	this	record	is	reflected	on	
the SOI reports for Andover, then I am happy 
with STARTS. I do not use STARTS myself, 
but I do review the reports that these employees 
generate.”

[16] Editors usually waited the next day to receive 
feedback because centers scheduled SOI batch 
programs around regular pipeline batch jobs.

[17]	 It	is	difficult	for	an	editor	to	maintain	his	or	her	
skill level if he or she moves frequently from 
one project to another, though the frequent 
changes may guarantee work for that employee.

[18]	 The	developers	considered	SOIACS	the	first	
step in building a system to manage its samples 
in an online environment. SOI planned to build 
subsystems to manage quality, resources, and 
sample selection as part of the modernization ef-
fort because the service center statisticians were 
retiring or service center management consid-
ered them irrelevant. Dan Trevors of the Quality 
Support Team and Doug Shearer of the Coordi-
nation Team shared responsibility for developing 
the SOI controlling and shipping process. Linda 
Taylor of the Distributed Processing System 

Team provided hardware support. The SOI 
operating branches, as well as the service center 
files	and	edit	operations,	defined,	collected,	and	
presented the user requirements. A manager’s 
comment: “The STARTS system is a valuable 
tool used on a daily basis. It helps track the work 
… as well as when it is edited within the edit 
teams. When a return is marked missing and we 
find	it	attached	to	another	return,	we	are	able	to	
go to the remarks [screen] at that time to docu-
ment the condition. The STARTS system is also 
used to look up prior-year information. If an EIN 
is the only information you have to track com-
ponent parts of a separated 1504C return, the 
STARTS system can provide much information 
on this. This helps us to locate additional return 
parts in order to edit a more complete document. 
STARTS provides many options in ordering the 
work. It is broken down by return type, three 
asset class categories, and the sample code only 
selection of returns. This gives management 
the	necessary	range	to	order	specific	types	of	
work at all times but is especially helpful when 
nearing various project completion dates. As 
transition continues here in Ogden, we are very 
interested in the future STARTS process and the 
new and evolving ways in which we will utilize 
the system. We look forward to the changes and 
future training that is available to all leads as 
well as the clerks and managers.”

[19]	 National	Office	analysts	held	a	planning	session	
with service center personnel the week of June 
18, 1990, at the Austin Service Center to collect 
ideas,	customer	needs,	and	specific	require-
ments for the SOI Automated Control System 
(SOIACS).	Back	in	National	Office,	the	team	
reviewed the requirements, analyzed the conse-
quences of implementing a control system, and 
wrote descriptive and detailed requirements and 
specifications,	which	bridged	the	requirements	
and the design of the application. Cincinnati 
Service Center assumed primary responsibil-
ity for the Oracle program development of this 
new application, with Don Flynn as the lead 
programmer. Tentative plans involved piloting 
the application in one processing center and one 



- 48 -

koSHanSky

nonprocessing center in the spring of 1991 for 
the Individual returns project. The SOI program-
ming staffs at the Cincinnati and Ogden Service 
Centers developed the next generation of the 
application,	which	National	Office	renamed	the	
Statistics of Income Automated Return Tracking 
System (STARTS). The Cincinnati staff devel-
oped and maintained the Individual Master File 
(IMF) version of STARTS, while the Ogden staff 
programmed and supported the Business Master 
File (BMF) version. In 2000, both programming 
staffs converted the text-based applications to a 
graphical user interface (GUI) application.

[20] Connections between the center terminals and 
the host minicomputer in Cincinnati occurred 
through PACNET.

[21] In the case of tax returns in SOI samples, this 
is metainformation about relational database 
properties; data warehousing; business intelli-
gence;	general	IT;	IT	metadata	management;	file	
systems; and image, program, project, and study 
schedules.

[22] SOI assigned information to each return: project, 
sample,	files	location,	edit	site,	editor,	delivery	
dates, level of edit complexity, document source 
(paper, electronic, or image). One result was a 
sample redesign, which embedded a panel within 
the annual cross-sectional samples. The STARTS 

application still distinguishes these two sets of 
returns. See Czajka, J. and Walker, B. (1990), 
Combining Panel and Cross-Sectional Selection 
in an Annual Sample of Tax Returns, 1989 Pro-
ceedings of the American Statistical Association, 
Section on Survey Research Methods. 

[23] The use of digital images, instead of paper, as 
source documents for editing is a new phase in 
the	SOI	workflow	process.	Other	SOI	processes	
include data cleaning and completion, weighting 
and estimation, and publishing tables and user 
analyses.

[24] Systems acceptability testing (SAT) occurs 
before the computing centers execute the SOI 
sampling programs. Sample design and sample 
selection are topics for further discussion in 
other papers.

[25] Stair, R.M. (1992), Principles of Information 
Systems: A Managerial Approach, Boyd and 
Fraser Publishing Company, Boston.

[26] Maurer, R. (2004), One Small Step Can Change 
Your Life: The Kaizen Way, Workman Publish-
ing Company, New York.

[27] Improving data quality through editing, impu-
tation, and record linkage is impossible if the 
administrative records that contain the data are 
unavailable or incomprehensible. 
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Customer Satisfaction Initiatives at IRS's 
Statistics of Income:  Using Surveys 

To Improve Customer Service
Ruth Schwartz and Beth Kilss, Internal Revenue Service

I RS’s Statistics of Income (SOI) Division conducts 
statistical studies on the operations of tax laws and 
publishes annual reports, including the quarterly 

SOI Bulletin, which includes statistics produced from 
tax and information returns.  SOI’s Statistical Infor-
mation	Services	(SIS)	office	responds	to	thousands	of	
data and information requests annually by providing 
SOI data along with technical assistance.  To ensure 
that customer needs are being met through the SIS of-
fice	and	through	its	flagship	publication,	SOI	has	been	
measuring customer satisfaction for both via customer 
satisfaction surveys.  These surveys are part of SOI’s 
commitment to use survey results to improve customer 
service.  This paper will focus on three aspects of these 
surveys:  the process by which we surveyed our custom-
ers,	the	findings	from	the	surveys,	and	the	steps	we	are	
taking to use the results to further improve our products 
and services.

In	the	first	section	of	the	paper,	background	infor-
mation	on	the	SOI	Division	and	its	SIS	office	will	be	
presented.  The second section will describe the meth-
odology used to survey SIS customers, present selected 
findings	from	the	past	4	years	of	surveys,	and	describe	
how SOI is using these results to identify areas for 
improvement.  Similarly, the third section will describe 
the	methodology,	 present	 a	 summary	of	 the	findings,	
and	briefly	discuss	some	of	the	steps	that	SOI	staff	are	
taking to improve the SOI Bulletin.  Finally, next steps 
to improve SOI products and services in response to 
survey	findings	will	be	discussed.

Background

Congress created the Statistics of Income Division 
90 years ago in the Revenue Act of 1916, some 3 years 
after the enactment of the modern income tax in 1913.  
Since that time, the Internal Revenue Code has included 
virtually the same language mandating the preparation 
of statistics.  Section 6108 of the Code currently states 
that “…the Secretary (of the Treasury) shall prepare 
and publish not less than annually statistics reasonably 

u

available with respect to the operations of the internal 
revenue	laws,	including	classifications	of	taxpayers	and	
of income, the amounts claimed or allowed as deduc-
tions, exemptions, and credits and other facts deemed 
pertinent and valuable.” 

SOI’s mission is to collect, analyze, and dissemi-
nate	information	on	Federal	taxation	for	the	Office	of	
Tax Analysis, Congressional committees, the Internal 
Revenue Service in its administration of the tax laws, 
other	organizations	engaged	in	economic	and	financial	
analysis, and the general public.  Its mission is similar 
to that of other Federal statistical agencies—that is, to 
collect and process data so that they become useful and 
meaningful information.  However, SOI collects data 
from tax returns rather than through surveys, as do most 
other statistical agencies.  These data are processed 
and provided to customers in the form of tabulations 
or	microdata	files.	 	Although	 the	 IRS	uses	SOI	data,	
the primary uses for SOI data are outside of IRS, in 
policy analyses designed to study the effects of new or 
proposed tax laws and in evaluating the functioning of 
the U.S. economy.

SOI Products and Services

Throughout its long history, SOI’s main emphasis 
has been individual and corporation income tax in-
formation.  SOI began publishing data with the 1916 
Statistics of Income, which reported individual and 
corporation statistics.  Beginning in 1936, for Tax Year 
1934, individual and corporation income taxes are each 
reported separately in annual “complete” reports (In-
dividual Income Tax Returns and Corporation Income 
Tax Returns, respectively).  The annual Corporation 
Source Book provides detailed balance sheet, income 
statement, and tax information for major and minor 
industry sectors by asset size.  Over the years, SOI has 
increased its studies and publications to meet the needs 
of	its	customers.	Introduced	in	1981,	the	SOI	flagship	
quarterly Statistics of Income Bulletin presents the most 
recent data and related articles on completed studies and 

u
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a historical section featuring time series data on a variety 
of tax-related subjects.

SOI also periodically publishes compendiums of 
research	on	nonprofit	organizations,	estate	taxation,	and	
personal wealth.  Research articles presented at profes-
sional conferences, namely the American Statistical As-
sociation and the National Tax Association, are published 
annually or biannually in the methodology report series, 
Special Studies in Federal Tax Statistics.  Beginning with 
the 1998 issue, SOI took over publishing the IRS Data 
Book,	a	fiscal	year	report	that	presents	statistical	data	on	
the administration of the U.S. tax system.   

SOI	produces	the	following	microdata	files:		Indi-
vidual Public-Use Files; Exempt Organizations Records; 
and Private Foundations (and Charitable Trusts) records, 
all of which are available for a fee.  Before release of the 
Individual Public-Use microdata, SOI follows security 
guidelines	and	edits	the	files	to	protect	the	confidentiality	
of individual taxpayers to prevent disclosure of taxpayer 
information.  Tax returns for both the exempt organiza-
tions and private foundations are publicly available.  
Because of their size, these products are available on 
a CD-ROM or magnetic tape directly from SOI.  Ex-
empt	 organization	microdata	files	 have	 recently	 been	
released to the public via the World Wide Web (www.
irs.gov/taxstats). 

Public awareness of SOI products and easy access 
to them have gradually increased over the years.  The 
establishment of the Statistical Information Services 
office	 that	 responds	 to	 data	 and	 information	 requests	
has helped raise the visibility of SOI products.  With the 
introduction of the IRS World Wide Web 10 years ago, 
SOI’s products became more widely used.  They may be 
found at:  www.irs.gov/taxstats.  TaxStats includes sta-
tistics for individuals, businesses, charitable and exempt 
organizations, IRS operations, budget, compliance, and a 
variety	of	other	topics.		Currently,	over	6,000	files	reside	
on TaxStats, and this number continues to increase.  

Statistical Information Services

The	Statistical	Information	Services	(SIS)	office	was	
established in 1989 as part of efforts to streamline the 
SOI organization.  From the beginning, the SIS mission 

u

was straightforward:  Provide accurate and timely data 
along with excellent customer support and technical 
guidance.  Although the number of customers and variety 
of requests have changed since then, the SIS staff still 
strives	to	fulfill	this	mission	after	17	years.		

When	the	SIS	office	was	set	up,	a	telephone,	paper	
reports and publications, index cards with contact infor-
mation, and a fax machine were its primary tools. Word 
spread	quickly,	and,	soon,	the	SIS	office	was	inundated	
with requests, many of whose answers were readily 
available from published data.  When customer requests 
involved data unavailable from SOI, the SIS staff made 
every	effort	to	fulfill	requests	by	providing	information	
or contacts from other sources.  In the early years of SIS 
operations, 4,000 to 5,000 information requests were 
received annually.  Over the years, the tools have been 
greatly improved, and more data are readily available 
directly to the public.  An electronic management sys-
tem—the Response Processing System (RPS)—tracks 
customer information and details of data requests.  While 
the number of information requests has leveled off with 
the availability of data on TaxStats, the complexity of 
information	requests	has	increased	significantly.		Many	
of these requests require extensive research, some sup-
ported by SOI subject-matter analysts. 

Over 2,400 information requests were received in 
Calendar Year 2005 from a broad range of customers.  
The customers are as widely varied as the information 
they request, from a private citizen requesting data on 
car dealerships to a Congressional request for alterna-
tive minimum tax data.  Consultants and researchers 
were the largest group with 23.5 percent of the requests.  
Academia and the Internal Revenue Service were the 
second and third largest groups with 13.5 percent and 
12.9 percent, respectively.  In Calendar Year 2005, most 
information requests (50.4 percent) were received by 
phone, followed closely by 48.2 percent received by e-
mail.		The	SIS	office	also	receives	information	requests	
via fax, letters, and walk-in customers.

SIS Customer Satisfaction Survey

How	is	the	SIS	office	meeting	its	goal	of	providing	
accurate and timely data along with excellent customer 

u
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support and technical guidance?  Although the SIS of-
fice	has	 received	positive	 feedback	 from	many	of	 its	
customers over the years, is this the complete picture?  
What about the many SIS customers, especially one-time 
customers, who do not provide any feedback?  In 2003, 
at the suggestion of SOI Director Tom Petska, the SIS 
office	administered	its	first	survey	to	measure	customer	
satisfaction.  Prior to the SIS survey, SOI surveyed its 
primary	customers	(Treasury’s	Office	of	Tax	Analysis,	
the Congressional Joint Committee on Taxation, and the 
Department of Commerce’s Bureau of Economic Analy-
sis).  The SIS survey was an expansion of SOI’s efforts 
to measure customer satisfaction and to use customer 
input to improve service.  

Administering the Survey

SOI mathematical statistician Kevin Cecco and, 
later, Diane Milleville, in close consultation with the 
SIS staff, designed the SIS surveys. Following the Of-
fice	of	Management	and	Budget’s	approval,	the	first	SIS	
survey was administered in 2003.  After assisting the 
customer with an inquiry, an SIS staff member provided 
a survey by e-mail or fax and asked for the customer 
to complete the survey related to the customer’s most 
recent inquiry.  

For	the	first	survey	in	2003,	the	survey	recipients	
were selected randomly from the daily roster of calls 
and	e-mails.		The	SIS	office	planned	to	survey	one	of	
every four customers from January through July 2003.  
However, the target number of customers surveyed was 
not reached in July, and the survey was extended an ad-
ditional month.  

Over the years, changes were made to improve the 
survey administration process.  Diane Milleville and In-
formation Technology Specialist Elizabeth Nelson, who 
provides RPS technical support, both helped improve 
the process.  Surveys were imbedded in an e-mail, thus 
eliminating the additional step of downloading the sur-
vey	file.		Every	customer	was	sent	a	survey,	eliminating	
difficulties	with	the	random	selection	process.		Custom-
ers surveyed were tracked in RPS, which eliminated the 
need for SIS staff to manually track them.  

Beginning with the 2004 survey, response options 
were revised to bring the SIS survey in line with a set of 

measures used by SOI’s parent organization, Research, 
Analysis, and Statistics (RAS).  Known as “balanced 
measures,” these criteria were designed to measure how 
well RAS meets its goals.  To maintain consistent mea-
sures throughout all divisions of RAS, including SOI, 
some SIS survey questions and response options were 
changed to include these measures. 

Findings

Table 1 highlights response rates for the 4 years the 
SIS	survey	was	administered.		Initially,	the	SIS	office’s	
goal was to achieve a response rate of 50 percent. SIS 
planned to survey approximately 400 customers with 
the expectation that it would receive 200 responses.  
Although SIS fell short of distributing 400 surveys by 
28	percent,	 it	was	 quite	 satisfied	with	 the	 49-percent	
response	rate.		However,	after	the	first	survey	in	2003,	
the response rate dropped 7 percentage points in 2004, 
but has increased to 44 percent in 2006.  The number 
of Government surveys sent to customers has increased 
over the years, and this may also contribute to the declin-
ing response rate.  Although SIS would like to have a 
higher response rate, it is pleased with its results to date.  
However, it will continue efforts to improve its survey 
instrument and its methods for administering it.

Table 2 presents the respondents by job function for 
each of the 4 years the survey was administered.  For 
2003, 2004, and 2006, the top 4 categories—consul-
tant/research, State/local government, academic, and 
IRS	 employee	 (excluding	 those	 classified	 as	 “other”)	
accounted for over 57 percent of survey respondents.  
For 2005, some 3 of the top 4 categories were the same; 
Federal Government replaced State/local government 
as the fourth category.  Collectively, these accounted 
for 53.2 percent of survey respondents. In an effort to 

Table 1—Response Rates for SIS Survey, 2003-2006
Surveys Number of Response 

distributed respondents rate

2003 288 142 49%
2004 425 181 43%
2005 300 125 42%
2006 271 119 44%

Year
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improve the SIS customer job function categories, some 
changes were made during the 4 years the survey was 
administered.		In	2004,	the	nonprofit	category	was	added.	
In 2006, the library, marketing, and realtor categories 
were substituted for the corporation category which 
was eliminated.

There were some differences noted between job 
functions reported by SIS survey respondents and the 
general population of SIS customers.  SIS compared re-
sponses for job function reported by survey respondents 
and recorded by SIS staff in the Response Processing 
System (RPS) during the time period in which the SIS 
surveys were administered.  Overall, the differences were 
generally small for most job categories.  An exception 
was the private citizen category, which ranged from 
12 to 2 percentage points higher (for 2003 and 2006, 
respectively) in RPS than in survey responses.  These 
differences may be a function of respondents’ self-clas-
sification	versus	classification	by	an	SIS	staff	member.

The	first	survey	was	designed	with	17	questions	in	
2003.  Over the 4 years, some questions were removed, 
while others were added.  Overall, the number of ques-
tions decreased to a total of 12 for the 2006 survey (see 
Appendix).  Survey questions focusing on 3 issues are 
discussed below. 

Table 3 presents the customer’s expectation of 
timeliness for receiving a response to an information 
request in the 2003 survey and actual timeliness in 
response to questions for the 2004-2006 surveys.  Note 
that the 2003 question is different from the question 
included in the 2004-2006 surveys.  The 2003 question 
asks when the customer expected to receive a response, 
but the 2004-2006 question asks when a response was 
received.  Response options for all 4 years are the same.  
By changing the wording of the question, SIS was able 
to obtain more useful information from its customers.  
The expected response time (in the 2003 survey) was 
significantly	greater	than	the	actual	response	time	(in	the	
2004 survey.)  Some 36 percent expected a response on 
the same business day in the 2003 survey.  However, over 
70 percent actually received their responses on the same 
business day (in the 2004 survey).  For 2004 through 
2006, a response was received in 3 business days or less 
93 percent to 96 percent of the time.

SIS compared the response time for survey respon-
dents to the response time recorded in RPS by SIS staff 
using the time period that SIS surveys were administered 
in 2004-2006.  Response time of 1 day or less reported 
by survey respondents ranged from 74.2 percent to 62.3 
percent (for 2005 and 2006 respectively).  In contrast, 
the response time of 1 day or less reported in RPS was 
93.8 percent or higher for 2004-2006. The SIS staff 
generally responds to customers within 1 business day 
as indicated in RPS.  However, a completed request 
including additional research may take 2-3 days.  This 
is indicated by 26.1 percent to 30.7 percent of survey 
respondents reporting a response time of 2-3 business 
days.  The response time gap between survey responses 
and RPS may be the difference between making an initial 
contact and delivering the completed information to the 
customer. 

Table 2—Percentage Distribution of SIS Survey
Respondents by Job Function, 2003-2006

Job

function 2003 2004 2005 2006

Total 100.0 100.0 100.0 100.0

Consultant/Research 19.4 17.8 15.3 17.1

State/Local government 14.4 13.9 8.1 10.1

Academic 13.7 13.3 13.7 15.1

IRS employee 10.1 12.8 12.9 14.2

Media 7.9 5.6 5.7 5.0

Corporation 7.2 8.3 10.5 n.a.

Federal Government 5.8 7.2 11.3 7.5

Private citizen 4.3 6.7 2.4 3.4

Tax Preparation/

Accounting firm 2.9 1.7 3.2 5.0

Association/Society 2.2 0.6 1.6 0.0

Congress 0.7 1.1 0.8 2.6

Law firm  -- 2.8 0.8 1.7

Nonprofit n.a. 4.4 4.8 5.9

Library n.a. n.a. n.a. 5.9

Marketing n.a. n.a. n.a. 1.7

Realtor n.a. n.a. n.a. 1.7

Other 11.5 3.9 8.9 2.5
n.a. -- not available

Year
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Table 4 presents the issue of meeting customer 
needs.  In 2004, the question and the response options 
were	changed	to	reflect	the	RAS	balanced	measures.	The	
2003	question	asked	if	SOI’s	product(s)/data	satisfied	
customer needs.  The 2004-2006 question asks if the 
product(s) or services(s) provided met customer needs.  
The major difference between the 2003 question and 
the 2004-2006 question is the response options.  In the 
2003 survey, there is no option for a “middle ground” 
between the “disagree options” and the “agree options.”  
Instead, a “not applicable” option is listed at the end after 
“strongly agree.”  Beginning with the 2004 survey, a “not 
sure/neither” option is available between the “disagree 
options” and the “agree options.”  During the 4 years of 
the surveys, the percentage of respondents who agreed 

or strongly agreed that their needs were met ranged from 
76.5 percent in 2004 to 82.5 percent in 2005. 

Table 5 presents  customers’ overall satisfaction with 
the most recent response they received from SIS.  For all 
4 years, the question was the same, but, beginning with 
the 2004 survey, the response options were changed to 
reflect	RAS	balanced	measures.	Therefore,	 responses	
are not comparable between 2003 and the 2004-2006 
responses.  However, for all 4 years, the satisfaction 

rate	remained	high.		Respondents	who	were	satisfied	or	
very	satisfied	ranged	from	85.9	percent	in	2004	to	91.6	
percent in 2005.

The surveys each year also included open-ended 
questions asking for further explanations, recommen-
dations, and suggestions for improving service to SIS 
customers.  The information gleaned from responses to 
these open-ended questions has been exceptionally use-
ful.  Several respondents suggested adding the missing 
years in SOI historical tables, published in the Statistics 
of Income Bulletin and also released on TaxStats.  In 
these historical tables, the most current 5 years were 
shown,	and,	for	earlier	years,	only	every	fifth	year	was	
shown.		Data	classified	by	locality	are	SIS’s	most	fre-
quently requested products.  SOI, in conjunction with 
the Census Bureau, produces county-to-county and 
State-to-State migration data, along with county income 
data.  SOI also produces Zip Code data.  Not surpris-
ingly, respondents requested more locality data.  Some 

Table 3—Response Timeliness for SIS, 2003-2006
Percentage of respondents indicating . . . 

Survey Response In
question options 2003

When did you Same day 36.0
expect to 2-3 business days 52.5
receive a 4-5 business days 8.6
response? 6 or more

business days 2.9

Survey Response In
question options 2004 2005 2006
When Same day 70.6 74.2 62.3

did you 2-3 business days 26.1 23.4 30.7
receive a 4-5 business days 1.7 2.4 3.5
response? 6 or more

business days 1.7  -- 3.5

Percentage of respondents indicating . . . 

Table 4—SIS Met Customer Needs, 2003-2006

Survey Response In
question options 2003

SOI's Strongly disagree 5.1
product(s)/data Disagree 8.0
satisfied your Agree 30.4

needs. Strongly agree 51.4
Not applicable 5.1

Survey Response In
question options 2004 2005 2006

The product(s) Strongly disagree 6.9 5.0 5.3
or service(s) Disagree 6.9 5.0 3.5
provided met Not sure/neither 9.7 7.5 12.3
your needs. Agree 33.1 29.2 33.3

Strongly agree 43.4 53.3 45.6

Percentage of respondents indicating . . . 

Percentage of respondents indicating . . . 

Table 5—Overall Satisfaction With SIS, 2003-2006

Survey Response In
question options 2003

Rate your overall Very low 0.7
satisfaction Low 1.4
with your Average 10.1

most recent High 34.8
data request. Very high 52.9

Survey Response In
question options 2004 2005 2006

Totally
Rate your overall dissatisfied 0.6 3.4 1.7

satisfaction Dissatisfied 3.5 0.8 2.6
with your Neither 9.9 4.2 7.8

most recent Satisfied 41.5 41.2 33.9
data request. Totally

satisfied

Percentage of respondents indicating . . . 

Percentage of respondents indicating . . . 

44.4 50.4 53.9
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respondents, for example, requested earned income tax 
credit and alternative minimum tax data by county or 
Zip	Code	and	migration	data	classified	by	occupation.		
Respondents also requested that locality data or the Cor-
poration Source Book be made available on TaxStats.  
These products have been available on a reimbursable 
basis from SOI.  

Changes Planned or Implemented 

Based on the input received from SIS customers, 
the	SIS	office	has	made	some	changes	over	the	past	3	
years.		The	SIS	office	conducted	a	benchmarking	trip	to	
the SIS’s counterpart at the U.S. Department of Transpor-
tation	and	is	looking	into	other	factfinding	trips.		After	
the	first	survey	was	conducted,	the	SIS	office	worked	
with an Information Technology Specialist to more ef-
fectively track customer requests and information about 
its customers.  

SOI has also made improvements to its products 
and services by eliminating breaks in time series data 
for many of its tables.  In selected SOI Bulletin historical 
tables, data for sequential years are published as space 
allows.  On TaxStats where no space limitation exists, 
SOI is looking into adding more years of historical data 
by inserting data for missing years.  SOI has also begun 
adding more data to TaxStats.  This year, SOI added the 
2000-2003 issues of the Corporation Source Book.

SOI Bulletin Survey

The SOI Division’s long history of publishing stems 
from its original mandate in 1916.  Over the years, the 
number of publications and the amount of time and ef-
fort to publish them have grown, but considerably less 
time has been spent evaluating the content, frequency, 
and dissemination of the publications.  Three years ago, 
these tasks were the charge for a new workgroup that in-
volved senior SOI staff and 3 members of SOI's Advisory 
Panel [1].  Initially, this group undertook to review the 
content and frequency of all SOI publications; examine 
how it could make them more useful; look at methods 
of advertising and disseminating; and look at what it is 
not publishing that perhaps it should.

u

Ultimately, the workgroup’s efforts turned to 
improving the quality of SOI’s most visible publica-
tion—the quarterly SOI Bulletin—and	 the	 efficiency	
of the Bulletin production process.  Two methods were 
used—focus groups and a customer satisfaction survey.  
The focus groups were conducted to learn how authors 
and reviewers perceive the writing and review process, 
and to solicit ideas for changes in the writing and review 
process.  The customer satisfaction survey was admin-
istered to better understand how SOI customers use the 
Bulletin,	how	satisfied	they	are	with	the	contents,	how	
useful the various features of the Bulletin are to them, 
and how it should be improved. The remainder of this 
section of the paper will be devoted to the Bulletin itself, 
describing	the	survey	process,	summarizing	the	key	find-
ings,	and,	finally,	telling	how	SOI	is	using	the	survey	
results to improve the publication. 

About the SOI Bulletin

Twenty-five	 years	 ago,	 in	 the	 summer	 of	 1981,	
the	first	 issue	of	the	Statistics of Income Bulletin was 
published.  It was initially created as the vehicle for dis-
seminating more limited data on topics formerly covered 
by separate reports, as well as to provide the results of 
the	growing	number	of	special	projects.		The	first	SOI 
Bulletin was 46 pages and included just 3 articles—on 
individual income tax returns, sole proprietorship 
returns, and partnership returns.  Recently, SOI Divi-
sion published the 100th Bulletin (Spring 2006, Volume 
25, Number 4), which included 6 articles; 23 selected 
historical and other data tables; sections on sampling 
methodology, projects and contacts, and products and 
services; and an index of selected previously published 
articles.		SOI	is	currently	working	on	the	first	issue	of	its	
26th year (Summer 2006, Volume 26, Number 1).  The 
average size of the report for 2005 was 310 pages.

Today’s Bulletin is issued quarterly, in March, June, 
September, and December and provides the earliest 
published	annual	financial	statistics	obtained	from	the	
various	 types	 of	 tax	 and	 information	 returns	filed,	 as	
well as information from periodic or special analytical 
studies of particular interest to students of the U.S. tax 
system, tax policymakers, and tax administrators.  It 
also includes personal income and tax data by State and 
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cern was that responses might not be representative of 
all users, meaning this information should probably not 
be	the	basis	for	any	final	decision	concerning	the	Bul-
letin.  Also, it was not possible to conduct a nonresponse 
analysis, because the majority of the Bulletin copies are 
distributed by the GPO, and SOI does not know who the 
customers are.  In addition, SOI decided not to continue 
to include the survey in subsequent issues of the Bulletin 
for several reasons—1) the responses were likely to be 
low again; 2) the OMB approval process was required 
for each issue of the Bulletin, and, with a low response 
rate,	it	would	be	more	difficult	to	justify	including	it	in	
the report; and 3) the OMB approval process had just 
become much longer, taking about 5 weeks instead of 
2 weeks.  Nevertheless, SOI did have the results from 
52 surveys to evaluate, and, after consulting with the 
mathematical statisticians advising us on this effort, 
they recommended that SOI work with the results it has 
and use another vehicle to focus on a particular part of 
the Bulletin, e.g., another focus group, should SOI decide 
to	solicit	additional	customer	feedback.		The	findings	are	
presented below. 

Findings

Type of respondents.  Over one-third of the respon-
dents	(36	percent)	were	affiliated	with	State	and	local	
governments.  Another 18 percent indicated a Federal 
Government	affiliation,	while	17	percent	had	a	Congres-
sional	affiliation.		Nearly	one-third	of	all	responses	came	
from members of the FTA list serve.

Use of other SOI products.  The three most heav-
ily used SOI products other than the SOI Bulletin were 
the Corporation Source Book, the IRS Data Book, and 
the Individual complete report—used by 40 percent-50 
percent of all respondents.   A little over one-third of 
respondents also indicated they used the Corporation 
complete report.  About one-fourth of all respondents 
use Special Studies in Federal Tax Statistics, public-use 
microdata	files,	and	special	tabulations.		Twenty	percent	
or less said they use other SOI products.

How respondents receive the Bulletin.  Half of all 
respondents receive the Bulletin through a subscrip-
tion.  Another 20 percent receive it directly from the 
SOI Division.

historical data for selected types of taxpayers, in addi-
tion to data on tax collections and refunds and on other 
tax-related items.  Much work goes into producing each 
issue of the Bulletin, but it was not clear whether it was 
meeting customers’ needs.  Thus, a survey was designed 
to collect critical information on how customers felt 
about the Bulletin.   

Administering the Survey

Once again, SOI Division mathematical statisticians 
Kevin Cecco and Diane Milleville were called upon to 
assist in developing the survey.  The result was a rela-
tively brief and visually engaging, 15-question customer 
survey, which was subsequently cleared for use by the 
Office	of	Management	and	Budget.		Following	OMB’s	
approval, the survey was then administered to SOI Bul-
letin customers in several ways.

The survey was sent directly via e-mail to SOI’s 
main	customers	at	the	Department	of	Treasury’s	Office	
of Tax Analysis, the Congress’s Joint Committee on 
Taxation, and the Commerce Department’s Bureau of 
Economic Analysis, as well as to all members of SOI’s 
Advisory Panel.  The survey was also included in the 
Summer 2004 and Fall 2004 issues of the SOI Bulletin 
for	customers	to	remove,	fill	out,	and	either	e-mail	or	fax	
back to SOI.  As a further outreach to potential SOI Bulle-
tin customers, an SOI Advisory Panel member facilitated 
the dissemination of the survey via the Federation of Tax 
Administrators (FTA) list serve in January 2005.   

Following a reasonable amount of time after pub-
lishing the Fall 2004 Bulletin and time allowed for FTA 
members to reply, the responses were compiled and 
analyzed.  In all, 52 surveys were returned.  The majority 
of respondents were from groups SOI targeted.  Only 
9	 respondents	filled	 out	 the	 survey	 from	 the	Bulletin 
itself.  To put these numbers in perspective, it should be 
noted that, for the Fall and Summer issues that year, ap-
proximately 2,000 copies of each were printed.  Of these, 
about 400 copies were sent to internal IRS and Treasury 
Department	offices,	about	1,250	copies	were	provided	
to	the	Government	Printing	Office	(GPO)	for	subscrib-
ers and the Federal Depository Libraries, and about 350 
copies were for the SOI Division for internal purposes.  
Because just 52 responses were received, a major con-
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Frequency of use.  Of the 49 who responded to how 
frequently they use the Bulletin, 37 (about 76 percent) use 
it 4 times a year.  Only 8 percent use it once a year.

Overall satisfaction.  Of the 49 who responded, 86 
percent	were	satisfied	or	totally	satisfied	with	the	SOI 
Bulletin; only	2	respondents	were	dissatisfied,	while	5	
were	neither	satisfied	nor	dissatisfied. 

Use	of	 specific	 features.  Of the 8 features listed 
(from the Bulletin Board column in the front of the 
report through the index on the inside back cover), and 
checking all that apply, the Selected Historical and Other 
Data section was by far the most frequently used—90 
percent of survey respondents, compared to 67 percent 
who said they use the featured articles and 38 percent 
who use the data releases. An equal number (about 25 
percent of respondents) use each of the remaining fea-
tures, except for the Bulletin Board, which less than 8 
percent indicated they use.

Suggestions for change.  When asked to check boxes 
regarding possible changes to the Bulletin, nearly half 
of all respondents indicated they would like to see more 
articles on topics of current interest.  They also indicated 
an	 interest	 in	 shorter	articles	 focused	on	key	findings	
(nearly 37 percent).  About one-fourth of respondents 
said they would like more details on methodologies and 
samples.  For the response “Other,” 8 survey respondents 
offered varied suggestions, such as adding links to data 
and explanatory material on the Web, including more 
longitudinal data, and reporting medians as well as aver-
ages and measures of variability.  

How to publish sections:  print, Web, or both.  This 
question dealt with the component parts of an article or 
data release and asked respondents whether they pre-
ferred the parts to be provided in print only, posted to 
the Web only, or to be available in both places.  About 
two-thirds of respondents preferred that the tables be 
provided in both mediums; nearly half or more than half 
of respondents indicated that they preferred most parts of 
an article to be published in print and on the Web.  

Use of Selected Historical and Other Data section.  
When asked if they used the Selected Historical and 
Other Data section, some 90 percent said yes.  Of those 

who said yes, over 93 percent said the tables are useful, 
and over 84 percent said the footnotes were useful.  Of 
the 2 respondents who answered no to this question, 1 
provided additional comments, indicating that publishing 
the historical tables in every issue was not necessary.

Where to publish historical tables.  Nearly 70 percent 
of those who use the historical tables felt that they should 
be published in both print and on the Web.  And of 19 
respondents who answered the question about how often 
to publish the historical tables, 11 (or about 58 percent) 
felt that the historical section should appear in all SOI 
Bulletin issues. 

Verbatims

The survey also included the following open-ended 
questions in order to gain additional information about 
how the information in the Bulletin is being used and 
to seek recommendations and suggestions for improve-
ments.  The following summarizes the responses SOI 
received to the open-ended questions from the survey:

•	 What is your primary use of the SOI Bulletin?

About 60 percent of respondents chose to reply.  
Verbatim responses covered a number of areas of uses.  
A few respondents stated that they use the Bulletin for 
“quick look-up of tabulations” or to look up the most 
recent	data	on	a	topic.		One	respondent	identified	him/
herself as a “scholar and educator with deep interest 
in the Federal tax system” who reads the Bulletin for 
“keeping up” responsibilities.  Another uses the Bulletin 
as a resource for responding to media inquiries.  The 
most recurring themes centered around the Bulletin as a 
source of data for research and for the historical series 
data.  About a third of the answers indicated that the 
statistics were used for research, revenue estimation, or 
tax modeling purposes.  Another 20 percent were mainly 
interested	specifically	in	the	historical	data	series	that	is 
included in each issue.  

•	 If you use the Selected Historical and Other Data 
section of the SOI Bulletin, which tables do you 
use,	do	you	find	them	useful,	do	you	find	the	ac-
companying footnotes useful, and how would you 
improve this section?
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About half of the 90 percent of survey respondents 
who indicated that they use the historical data also told  
which tables they use of the 23-table section.  The major-
ity of those use 7 or more tables in the section, and some 
specifically	stated	that	they	use	the	annual	State	data,	a	
53-page table titled “Table 2—Individual Income and 
Tax Data by State and Size of Adjusted Gross Income.”  
About 20 percent of those who use the historical data 
also	answered	the	question	about	whether	they	find	the	
tables useful.  Several stated they found them useful as 
a	quick	reference,	while	others	stated	they	were	difficult	
to	find	on	 the	Web.	 	Only	1	person	 responded	 to	 the	
question	about	 the	footnotes,	finding	them	marginally	
useful because of the limited number of years available.  
Suggested improvements ranged from only publishing 
the series once a year to adding more details on the State 
table, to including many more years of data, to more 
detailed data by State.

•	 If you could change one thing about the SOI 
Bulletin, what would it be?

Nearly one-third of respondents chose to weigh in on 
this question, and the responses offered a few themes for 
SOI to consider—namely, a more detailed index in order 
to locate earlier, related articles; more topical, interesting 
articles as some are rather dull; providing links to related, 
technical documentation on the Web; and making Bul-
letin tables electronically useable on the Web.

•	 Please provide any additional comments and/or 
suggestions you may have concerning the SOI 
Bulletin.

Ten responses were received to this question, about 
20 percent of those who responded to the survey.  No 2 
comments were the same, but 1 area for improvement 
suggested in several responses was in length of articles.  
There	appears	to	be	more	interest	in	the	figures,	graphs,	
and tables.  Some asked SOI to consider producing a 
leaner Bulletin, with more interesting writing.  

Next Steps

Although the number of responses to the SOI Bul-
letin Survey was less than had been hoped for, SOI feels 

that the results are a strong indication that it is doing a 
good job of producing the SOI Bulletin. It is a useful re-
source	for	looking	up	data	on	a	specific	tax-related	topic.		
The historical data are very useful and an important 
reason why people use the Bulletin.  However, it is also 
clear that there is room for improvement in a number of 
areas—in improving the writing, e.g., preparing shorter 
articles	 focused	 on	 key	findings	 and	 preparing	more	
articles on topics of current interest.  Many customers 
are also interested in more details on methodologies and 
samples. And another message that came through is an 
interest in more consecutive years of historical data.

These results, along with the results from focus 
groups with Bulletin authors and technical reviewers, 
are	being	used	to	focus	SOI	efforts	on	specific	areas	of	
improvement.  Recently, SOI has been working with 
some of the members of SOI’s Web Modernization 
Team with the goal of improving the process of produc-
ing and posting tables to the TaxStats Web site, which 
should also improve the process of producing Bulletin 
articles.  One outcome in streamlining this part of the 
Bulletin production process is that we are making data 
available earlier on TaxStats.  The TaxStats Web Team 
is also working with a contractor on a dynamic tables 
prototype that will allow users to make their own tables 
from previously tabulated SOI data.  Currently, this is a 
prototype that allows users to make tables from 2 years 
of Corporation Source Book data.  The prototype will 
run for 4 months, after which SOI will evaluate feedback, 
costs,	etc.,	to	determine	how	this	will	fit	into	SOI’s	data	
dissemination strategy.

SOI also plans to address Bulletin content issues.  
Working more closely with managers, authors might 
want to refresh their articles by shortening them, by 
becoming more familiar with relevant tax and economic 
literature, by soliciting ideas from senior staff from 
Treasury’s	Office	of	Tax	Analysis	and	other	customers,	
and by coauthoring articles with senior staff or outside 
experts.  SOI will seek to assist authors in accessing the 
tax and economic literature by establishing an electronic 
index	 of	 the	SOI	 library	 and	 arranging	 a	 briefing	on	
electronic research from a sister organization in IRS.  
SOI will also assemble a collection of examples of 



- 58 -

ScHWartz and kilSS

good Bulletin articles and other descriptive papers to 
aid newer authors.

SOI will continue to work on improvements to the 
Bulletin, as evidenced by current efforts to get consen-
sus from our senior managers on a plan to improve the 
Bulletin production process, followed by incremental 
improvements in content and quality of the articles and 
tables.  In so doing, SOI is committed to responding to 
the recommendations and suggestions of customers.

Summary and Conclusion

As discussed, the Statistics of Income Division is 
using surveys to improve the methods of conducting 
business, with the emphasis on providing top-quality 
service to its customers.  The SIS Survey questions dealt 
with communication, characteristics of staff, opinions of 
products, and overall satisfaction.  When surveying SOI 
Bulletin customers, questions dealt with characteristics 
of the customer and their use of this publication, con-
tent issues, suggestions for improvement, and overall 
satisfaction.  Administering surveys and examining the 
findings	over	the	past	several	years	have	shown	SOI	how	
well it is doing in improving products and services and 
have helped guide efforts to make improvements in these 
areas.  For both the SOI Bulletin	and	SIS	surveys,	specific	
suggestions included in verbatims related to SOI current 
products have been particularly useful.  The Statistical 
Information	Services	office	has	definitely	benefited	from	
the surveys over the past 3 years.  The SIS survey has 
helped maintain focus on the SIS goal of outstanding 
customer service.  To continue to improve its service, the 
SIS made a benchmarking trip and is looking into other 
factfinding	 trips.	 	The	SIS	office	 also	made	 enhance-
ments to its electronic tracking system (RPS) to more 
effectively track requests as well as information about 
its customers.  Overall, the responses received from the 

u

SOI Bulletin Survey have been useful in helping direct 
current efforts to improve the Bulletin.  For example, it 
is clear that SOI customers want to continue to have His-
torical and other data tables available in both the printed 
publication and on SOI’s TaxStats Web site.  SOI staff  
are currently working on guidelines for making tables 
more usable for customers who intend to download and 
work with the data SOI provides.  In addition, SOI is 
working on improving the publication process itself as 
well as desktop publishing tools to improve the layout 
process.  It also intends to work with subject-matter 
experts and mathematical statisticians on content issues, 
e.g., including more articles on topics of current interest 
and	more	information	about	the	statistical	significance	
of reported trends, especially when the reported changes 
are small in magnitude. 

Measuring customer satisfaction will continue to be 
a major priority for SOI.  A commitment to collecting 
and evaluating customer satisfaction data will ensure that 
SOI does not lose its focus on critical issues that impact 
its customers.  An emphasis on collecting customer sat-
isfaction data will reinforce the SOI culture of providing 
outstanding service to customers.  As is evident from the 
data presented in this paper, SOI has done a good job of 
exceeding the expectations of its customers.  However, 
SOI should not rest on its successes, but rather work 
even harder to ensure that it meets or exceeds customer 
expectations.

Endnotes

[1]	 	 “Recent	Efforts	To	Maximize	Benefits	From	 the	
Statistics of Income Advisory Panel,” by Tom 
Petska and Beth Kilss, Special Studies in Federal 
Tax Statistics:  2003, Internal Revenue Service, 
pp. 87-93, 2004

u
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Appendix—SIS Survey Questions, 2003-2006 
Year question included in SIS 
surveySurvey question 
2003 2004 2005 2006 

Which of the following best describes your function? X X X X 
How did you initially learn about the SOI SIS office? X       
How did you initially learn about the SIS office?   X X X 
How often do you contact our office? X       
How often do you contact the SIS office?   X X X 
How did you contact us?       X 
Was the first contact with SIS with a (1) person; (2) voice message       X 
Was the voice message (1) informative; (2) user-friendly; (3) okay as is; (4) 
needs improvement by _______ .       X 
Did we satisfy your data request?  (If only partially or not at all, please 
explain why in the space provided below.) X       
Did the SIS satisfy your data request?   X X   
Did the SIS satisfy your data request?  (If only partially or not at all, please 
explain why in the space provided below.)       X 
When did you expect to receive a response from us? X       
When did you receive a response?   X X   
When did you receive a response regarding your most recent data request?       X 
How did we respond to your data request?       X 
Our staff was focused on determining and satisfying your needs. X       
The SIS staff was focused on determining and satisfying your needs.   X X   
SOI's product(s)/data satisfied your needs. X       
The product(s) or services (s) provided met your needs.   X X X 
SOI's product(s)/data was received timely. X       
How often do you retrieve data from the SOI Tax Stats Web site? X X X   
The SOI Tax Stats Web site is user-friendly. X       
The SOI Tax Stats Web site is user-friendly. Why or why not?   X X   
The Tax Stats Web site would be more useful if SOI considered the 
following  (1) adding more data; (2) deleting data;  (3) adding links to other 
data; (4) having a sophisticated search engine; (5) allowing "create your 
own" tables; (6) adding more viewable tables; (7) other. X       
The information from the SOI Tax Stats Web site met your needs.   X X   
If you could change one thing about the SOI Tax Stats Web site, what 
would it be?   X X   
How would you prefer to receive products/files from SOI? X       
If given the opportunity, would you be interested in receiving notice of 
future data/product releases from SOI? X       
What types of new products/data releases would you be most interested in 
receiving? X X X X 
Please rate your overall satisfaction with your most recent data request. X X X X 
If you could change one thing about your experience with the SIS office, 
what would it be?       X 
Please list any other Web sites that you use to gather statistical information. X       
Please provide comments and/or suggestions on ways we may better serve 
your data needs. X X X X 
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Performance Measurement within 
the Statistics of Income Division

Kevin Cecco, Internal Revenue Service

D eveloping performance measures continues to 
play an important role for many of the Federal 
statistical agencies. Federal statistical agen-

cies produce critical data to inform public and private 
decisionmakers about a range of topics of interest, in-
cluding the economy, the population, and other pertinent 
statistics.  The ability of statistical agencies to make ap-
propriate decisions about the statistical data they produce 
depends critically on the availability of relevant, inno-
vative, and timely performance measures.  The Federal 
statistical community remains on alert for opportunities 
to strengthen these measures, when necessary. 

For	Federal	statistical	programs	to	effectively	benefit	
their data users, the underlying data systems must be 
viewed as credible. In order to ensure this credibility, 
Federal statistical agencies have worked very hard to 
develop high-quality standards, as well as maintain 
integrity	and	efficiency	in	the	production	of	data.	 	As	
the collectors and providers of these basic statistics, the 
responsible agencies act as data stewards, balancing 
public and private decisionmakers’ needs for informa-
tion with legal and ethical obligations to minimize 
reporting burden, respect respondents’ privacy, and 
protect	 the	confidentiality	of	 the	data	provided	 to	 the	
Government.

To reach this goal, Federal statistical agencies have 
focused on developing and measuring performance in 
the critical areas of quality, program performance, rel-
evance, and timeliness.  Lastly, customer satisfaction is 
quite often used as a means of measuring the usefulness 
of products and services provided by Federal statistical 
agencies.  Performance measures form the basis for 
evaluating	such	areas	as	how	efficiently	Federal	agencies	
provide services, how well taxpayer dollars are spent, 
and assessing whether Federal agencies are meeting their 
mission requirements.

Understanding Performance   
 Measures

In general terms, a performance measure is a quan-
titative or a qualitative measure derived from a series 
of observed facts that can reveal relative positions in 
a given area. When evaluated at regular intervals, the 
measure can point out the positive or negative trends 
and changes over time.  Performance measures are 
also useful in drawing attention to particular issues that 
pertain directly to organizational mission achievement. 
They can also be helpful in setting policy priorities for 
a Federal agency. 

There are several pros and cons related to perfor-
mance measures.  These include:

Pros:

•	 Can summarize complex issues in simple terms 
for supporting decisionmakers.

•	 Are	easier	to	interpret	than	trying	to	find	a	trend	
among larger sets of data.

•	 Facilitate communication with appropriate 
target audiences.  

•	 Promote accountability and credibility.

Cons:

•	 May send misleading messages if they are 
poorly constructed or misinterpreted.

•	 May be misused if the construction process is 
not transparent and lacks sound statistical or 
conceptual principles.

u
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Constructing Performance Measures

There are countless sources of information on how 
statistical agencies should construct solid performance 
measures.  Provided below are four guidelines that 
should be followed when creating and implementing 
performance measures.  Each step is important for 
statistically sound and defensible measures.  Equally 
important is the notion of ensuring that all four guide-
lines are followed in an orderly and cohesive process.  
Choices made in one step can have important implica-
tions for other steps.  

1. Developing a Solid Foundation:  A sound frame-
work is the starting point in formulating perfor-
mance measures. The framework of measures 
should be built in a manner that correlates with 
the mission of an organization, as well as aligns 
with strategic goals and organizational objectives.  
The framework should be precise, articulating the 
purpose of the statistical agency. 

2.  Selecting Quality Data:  The strengths and weak-
nesses of performance measures are largely based 
on the quality of the underlying data. Ideally, 
measures should be formulated based on their 
relevance, analytical soundness, timeliness, and 
availability. While the development of perfor-
mance measures must be guided by the framework 
of useful indicators, the data selection process can 
be	very	subjective	as	there	is	no	specific	and	gen-
erally accepted method for developing measures.  
More importantly, the inability to obtain relevant 
data may also limit a statistical agency from build-
ing sound and defensible performance measures. 

3.  Identifying the Right Performance Measures:  
Over the past decade, there has been a renewed 
effort in developing meaningful performance 
measures.  Unfortunately, performance measures 
are sometimes selected in an arbitrary manner. 
This can lead to measures which confuse and mis-
lead decisionmakers and the general public.  The 
underlying nature of the data needs to be care-
fully assessed before constructors can develop the 
“right” measures. 

u 4.  Presenting and Disseminating:  The way per-
formance measures are presented is not a trivial 
issue. Performance measures must be able to 
communicate an accurate and persuasive picture 
to decisionmakers and organizational leaders. The 
representation of performance measures should 
provide clear messages without obscuring individ-
ual data points. There are many interesting ways 
of disseminating critical information, such as de-
veloping innovative balanced scorecards.  These 
offer the general public the means to clearly show 
evidence of improving or declining performance.  
Statistical agencies should always strive to be 
independent and unbiased when presenting and 
disseminating performance measurement results.

Performance Standards within the  
 Federal Statistical Community

Statistical agencies maintain the quality of their data 
or information products, as well as their credibility, by 
developing meaningful performance measures for their 
organizations. Federal statistical agencies have collabo-
rated on developing a meaningful set of performance 
measures for use under the Government Performance 
and Results Act and in completing the Administration’s 
Program Assessment Rating Tool (PART). These statisti-
cal agencies have agreed that there are six conceptual 
dimensions within two general areas of focus that are key 
to measuring and monitoring statistical programs. 

The	first	area	of	focus	is	Product	Quality,	encom-
passing the traditional dimensions of relevance, accu-
racy, and timeliness. The second area of focus is Program 
Performance, encompassing the dimensions of cost, 
dissemination, and mission achievement.

Provided below is a brief review of these six quality 
dimensions, split between Product Quality and Program 
Performance.

Product Quality: Statistical agencies agree that product 
quality includes many attributes, including relevance, 
accuracy, and timeliness.  The basic measures in this 
group	relate	to	the	quality	of	specific	products,	thereby	
providing actionable information to key stakeholders. 

u
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These are ‘‘outcome-oriented’’ measures and are critical 
to the usability of these products.  Statistical agencies 
establish goals and evaluate how well targets are met. 
In some sense, relevance relates to ‘‘doing the right 
things,’’ while accuracy and timeliness relate to ‘‘doing 
things right.’’  

1. Relevance: Qualitative or quantitative descriptions 
of the degree to which products and services are 
useful and responsive to users’ needs. Relevance 
of data products and analytic reports may be 
monitored through a professional review process 
and ongoing contacts with data users. Product rel-
evance may be indicated by customer satisfaction 
with product content, information from custom-
ers about product use, demonstration of product 
improvements, comparability with other data 
series, agency responses to customer suggestions 
for improvement, new or customized products or 
services, frequency of use, or responses to data 
requests from users (including policymakers).

2. Accuracy: Qualitative or quantitative measures 
of important features of correctness, validity, 
and reliability of data and information products 
measured as degree of closeness to target values. 
For	statistical	data,	accuracy	may	be	defined	as	
the degree of closeness to the target value and 
measured as sampling error and various aspects 
of nonsampling error (e.g., response rates, size of 
revisions, coverage, and edit performance). For 
analysis products, accuracy may be the quality of 
the reasoning, reasonableness of assumptions, and 
clarity of the exposition, typically measured and 
monitored through review processes. In addition, 
accuracy is assessed and improved by internal 
reviews, comparisons of data among different 
surveys, linkages of survey data to administrative 
records, redesigns of surveys, or expansions of 
sample sizes.

3. Timeliness: Qualitative or quantitative measure of 
timing of information releases. Timeliness may be 
measured as time from the close of the reference 
period to the release of information, or customer 
satisfaction with timeliness. Timeliness may also 

be measured as how well agencies meet sched-
uled and publicized release dates, expressed as a 
percentage of release dates met.

Program Performance: Statistical agencies agree that 
program performance encompasses balancing the dimen-
sions of cost, dissemination, and mission accomplish-
ment	 for	 the	agency	as	a	whole;	operating	efficiently	
and effectively; ensuring that customers receive the 
information they need; and serving the information 
needs of the Nation. Costs of products or programs may 
be	used	to	develop	efficiency	measures.	Dissemination	
involves making sure customers receive the information 
they need via the most appropriate mechanisms. Mission 
achievement means that the information program makes 
a difference. Hence, three key dimensions are being used 
to indicate program performance: cost (input), dissemi-
nation (output), and mission achievement (outcome).

4. Cost: Quantitative measure of the dollar amount 
to produce data products or services. The de-
velopment	and	use	of	financial	performance	
measures within the Federal Government are an 
established goal; the intent of such measures is to 
determine the ‘‘true costs’’ of various programs 
or alternative modes of operation at the Federal 
level. Examples of cost data include full costs of 
products or programs, return on investment, dollar 
value	of	efficiencies,	and	ratios	of	cost	to	products														
distributed.

5. Dissemination: Qualitative or quantitative in-
formation on the availability, accessibility, and 
distribution of products and services. Most agen-
cies have goals to improve product accessibility, 
particularly through the Internet. Typical measures 
include:	on-demand	requests	fulfilled,	product	
downloads, degree of accessibility, customer sat-
isfaction with ease of use, number of participants 
at user conferences, citations of agency data in the 
media, number of Internet user sessions, number 
of formats in which data are available, amount of 
technical support provided to data users, exhibits 
to inform the public about information products, 
issuance of newsletters describing products, and 
usability testing of Web sites.
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6. Mission Achievement: Qualitative or quantita-
tive information about the effect of, or satisfac-
tion with, statistical programs. For Government 
statistical programs, this dimension responds to 
the question—have we achieved our objectives 
and met the expectations of our stakeholders? 
Under this dimension, statistical programs docu-
ment their contributions to the goals and missions 
of parent departments and other agencies, the Ad-
ministration, Congress, and information users in 
the private sector and the general public. For sta-
tistical programs, this broad dimension involves 
meeting recognized societal information needs; 
it also addresses the linkage between statistical 
outputs and programmatic outcomes.

Performance Standards within the  
 Internal Revenue Service Statistics  
 of Income Division

The mission of the Statistics of Income (SOI) Divi-
sion is to collect, analyze, and disseminate information 
on	Federal	taxation	for	the	Treasury	Department’s	Office	
of Tax Analysis, Congressional Committees, the Internal 
Revenue Service in its administration of the tax laws, 
other	organizations	engaged	in	economic	and	financial	
analysis, and the general public.  To accomplish the mis-
sion, the SOI provides statistical data to be used strictly 
in accordance with, and subject to, the limitations of the 
disclosure provision of the IRS Code.

The SOI Division worked with others within IRS to 
develop 12 performance measures.  The measures cover 
various areas of operation and attempt to magnify the 
level of service provided to our primary stakeholders.  
In creating the performance measures, the group worked 
very hard to ensure that the measures were all-encom-
passing within the four strategic goals of SOI, including 
becoming our customers’ preferred source, attracting 
and challenging high-quality employees, making a dif-
ference in tax administration, and increasing visibility 
of the SOI Division.

u

Twelve SOI Performance Measures

What follows is a summary of the 12 performance 
measures.		Specifically,	a	definition	is	provided,	as	well	
as a synopsis of results over the past 3 years.

Measures 1 and 2 are collected from customer sat-
isfaction surveys that are administered to our critical 
stakeholders in OTA, JCT, and BEA, as well as selected 
customers and employees throughout IRS.

1. Percentage of customers who feel the product or 
service met their needs:

Include a question on a customer satisfaction survey 
asking: “Did the product(s) or service(s) provided to your 
organization meet your needs.”

2. Overall RAS Customer Satisfaction rate:

Include a question on a customer satisfaction 
survey asking:  “Please rate your overall satisfaction                   
with SOI.”

u

Measures 1 and 2–Product Met Needs of Customer and
Customer Satisfaction Rates 

• Results from the chart show fairly comparable rates between
Measures 1 and 2 over the past 3 years

• Since this measure captures results from five different customer
surveys, relevance and satisfaction rates vary quarter by quarter.
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3.  Overall Employee Satisfaction Scores from the 
Employee Survey:

Definition: The grand mean score from 12 questions 
found on IRS’s annual employee satisfaction survey.  

4.  RAS Attrition rates:

Definition: Attrition	rate	is	defined	as	the	total	number	
of employees who have a break in service from IRS 
within	a	given	fiscal	year	divided	by	the	total	number	of	
employees (part and full-time) on the rolls at the begin-
ning	of	a	fiscal	year.

5.  Number of applicants per job opening:

Definition: The total number of unique applicants 
received for each job announcement.  This includes 
all applications received by the servicing personnel 
specialist.  

6.  Number of Senior Leadership Briefings:

Definition: Tally	of	 senior	 leadership	 team	briefings.		
Senior	leaders	are	defined	as	individuals	and	comprise	
23 senior IRS executives.

7.  Number of Presentations Given Outside the         
Service:

Definition: The number of program presentations given 
to groups and/or individuals outside the Service.  Each 
briefing	will	count	as	one	(e.g.,	if	an	organization	briefs	
multiple customers at the same time, that will count as 
one	briefing).

Measure 4–RAS Attrition Rate

Attrition rate is defined as the number of employees who 
have a break in service from IRS within a given fiscal year 
divided by the number of employees on rolls at the 
beginning of the fiscal year.

Results:

2003 2004 2005
4.70 % 3.80 % 4.40 %

Measure 5–Number of Applicants per Job Opening

Number of applicants per job opening has fluctuated significantly over the 
past 3 years.  On average over the past 3 years, SOI receives 
approximately seven applicants per job announcement.
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Measure 6–Number of Senior Leadership Briefings

IRS Senior Leadership Group consists of 23 executives across the Service.  
The graphic shows a relatively small, yet inconsistent, number of Leadership 
briefings over the past 3 years.
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Measure 3–Employee Satisfaction

Measure captures the annual Gallup Grand Mean 
Score across Q12 questions for SOI:

2003 2004 2005
Grand Mean Score 3.99 3.86 3.81

Results show a slight decline in employee satisfaction 
over the past three years
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8.  Number of New and Repeat Customers:

Definition: A	Customer	is	defined	as	an	individual	per-
son	or	organization	that	officially	authorizes	a	product	
or service.  A Repeat Customer is the same individual or 
organization requesting a new work activity, and a New 
Customer is a new individual person or organization 
requesting a new work activity.  

9.  Number of data requests, publications, reports, 
and data sets completed:

Definition: This measure is a count of work products 
completed by SOI.  It includes four types of work prod-
ucts.  It captures: 1) data requests produced from a query 
from one of the RAS data sets; 2) publications produced 
according to a regular or routine schedule or as part of 

normal business operations; 3) reports produced as a 
result of an analysis; or 4) new data sets produced from 
existing databases.

10.  TaxStats Internet Activity:

Definition: The number of visits to the TaxStats Internet 
site.		Visits	are	defined	as	the	number	of	times	a	visitor	
came to TaxStats within a given period of time.

The number of page views to the TaxStats Internet 
site.  When a visitor accesses a page, it requests all of 
the hits on that page, including the page itself.  In order 
to report the number of page views, the Web site analy-
sis software separates the page hits from the other hits.  
These numbers make up the page view metric.

Measure 8–Number of New and Repeat Customers

• A customer is defined as an individual or organization authorizing a product or 
service from RAS. Web activity is not included in this measure.

• Data have fluctuated for this measure over the past 2 years.   
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Measure 9–Number of Data Requests, Publications, Reports, and Data Sets

Similar to new and repeat customers, the number of data requests, 
publications, reports, and data sets has bounced around between 75 and 125 
per quarter.
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Measure 10–TaxStats Internet Activity

The redesign of the IRS.gov Web site in 2005 might be the prevailing reason 
for the lack of a spike in TaxStats visits and page views during the 1st Quarter
of 2006.
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Measure 7–Number of Presentations Given Outside the Service

Such audiences for presentations include GAO, TIGTA, ASA, and NTA 
meetings, and various IRS advisory groups.  Results show a relatively 
consistent pattern in the number of presentations over the past 2 years.
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12.  Number of mentions of SOI in major media:

Definition: This indicates media coverage of SOI ac-
tivities by mass media, such as the Wall Street Journal, 
Washington Post, New York Times, and Tax Notes.

References

Strengthening Federal Statistics, Analytical Prespec-
tives, Budget of the United States Government, 
Fiscal Year 2007, Chapter 4, February 2006.

OECD Working Paper 2005/3, Handbook on Con-
structing Composite Indicators: Methodology and 
User Guide, August 2005.
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11.  RAS Intranet Web Activity:

Definition: The number of visits to the RAS Intranet site.  
Visits	are	defined	as	the	number	of	times	a	visitor	came	
to the RAS Intranet site within a given period of time.

The second part of this measure is the number of 
page views to the RAS Intranet site.  When a visitor 
accesses a page, it requests all of the hits on that page, 
including the page itself.  In order to report the number 
of page views, the Web site analysis software separates 
the page hits from the other hits.  These numbers make 
up the page view metric.

Measure 11–Number of Visits and Page Views on the RAS Web site

Data for this measure became available to RAS during the 3rd Quarter
of 2003.  Results clearly reveal an aberration in data.  This spike was 
likely caused by Google search testing in June and July. 
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Measure includes citations in the Wall Street Journal, Washington Post, 
New York Times, and Tax Notes. The number of media citations for SOI has 
remained fairly constant over the past 2 years.





3

Broad Quality Issues 
in Organizations

Milleville





- 71 -

Tying Web Site Performance to Mission 
Achievement in the Federal Government

Diane M. Milleville, Internal Revenue Service

A s the World Wide Web (WWW) continues to 
expand, both in size and in how it is accessed, 
so does the Federal Government’s dependence 

on it as a gateway for reaching the American public, 
who increasingly rely on the Web to obtain informa-
tion.  The role of the WWW in how Federal agencies 
interact with their customers has changed dramatically 
over the years.  Federal Web sites are fairly extensive, 
containing a wealth of information targeted to a vari-
ety of audiences.

While agencies have been utilizing the Web to 
disseminate information for years, little, in compari-
son, has been done to understand and evaluate how 
effective these Web sites are when it comes to agency 
mission achievement.  However, with the costs associ-
ated with Federal Web sites, it is imperative that each 
agency ensure that its Web site makes a meaningful 
contribution toward achieving its mission.  

As with most things, that is easier said than 
done.  The Government placed greater emphasis on 
this task, having issued an assortment of documents 
that each addresses the topic in different ways, but 
did not develop a concise guide to address the most 
important aspects of mission achievement assess-
ment and how Webmasters can apply it to their own 
sites,	leaving	this	undertaking	largely	undefined	and	
Webmasters at a loss of direction.  In an effort to help 
Webmasters with various tasks, the Web Manager’s 
Advisory Council, a group of Web managers from all 
areas of the Federal Government, created task groups 
to develop guidance that contained as much detail as 
possible, while remaining general enough to apply to 
any Federal site.  

Among these task groups was the Performance 
Measures and Mission Achievement (PMMA) task 

group [1], which developed a detailed single-source 
guide to show how a Web site contributes to mis-
sion achievement [2].  The guide condenses the vast 
amount of information on this topic into a step-by-step 
process to show mission achievement through Web 
site performance, while also meeting Government per-
formance measure commitments.  It was designed for 
both Web managers who are more advanced in their 
efforts, as well as for managers who are just beginning 
the process.  Following the guide, every Federal Web 
manager should be able to demonstrate how their re-
spective Web sites contribute to their agency’s missions.

Performance Measurement as a   
 Requirement

General performance measures are not new to the 
Federal Government.  Since the early 90s, various 
Government initiatives have emphasized the impor-
tance of measuring performance of Federal programs.  
Each initiative addresses performance measures in 
a slightly different manner.  Some added additional 
requirements, building on previous initiatives and im-
proving areas that were lacking, while others reinvent-
ed the idea of Government performance measurement.  
But each edict has one thing in common: holding 
Federal programs accountable to the American public.

In 1993, the Government Performance and Results 
Act mandated that Federal performance be measured 
and results reported publicly, in an effort to make all 
agencies accountable to the American public.  This 
Act,	which	is	considered	to	be	the	most	significant	
advance in bringing accountability to Government 
programs [3], mandated that Federal performance be 
measured and results be reported publicly.

u
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Since 1993, the Federal Government has added 
additional requirements, which have built upon the 
Government Performance and Results Act.  This in-
cludes the Program Assessment Rating Tool (PART), 
which was introduced in the Fiscal Year 2004 budget.  
PART assesses a program’s effectiveness and demands 
that Federal programs show results in order to earn 
financial	support.		The	Office	of	Management	and	
Budget Circular A-130, Management’s Responsibility 
for Internal Controls, called for the institution of per-
formance measures that monitor actual performance as 
compared to expected results.

There is no lack of information when it comes 
to what agencies need to evaluate.  The problem is 
that the Federal Government does not provide much 
guidance in terms of how agencies can evaluate their 
programs.  This is especially true for measuring Web 
site effectiveness.

How To Show Mission Achievement

Determining how to show mission achievement 
through Web site performance is not easy, especially 
with the lack of guidance available.  Web managers 
are familiar with common Web performance metrics 
that	cover	visitor	traffic	(including	visits	and	page	
views).  And while such information is valuable, these 
types of broad measures alone cannot be used to dem-
onstrate mission achievement.

Before a Web site manager begins this process, he 
or she should understand that not all aspects of a Fed-
eral Web site must demonstrate mission achievement.  
It is acceptable to provide features on a Web site that 
do not relate to an agency’s mission. 

Another thing to keep in mind is that agencies do 
not need an extensive amount of metrics in order to 
show mission achievement.  Well-developed, quality 
metrics will provide much more valuable information 
than a report full of every metric the manager could 
think of.

Since there is much to consider before jump-
ing into actual performance metrics, the PMMA task 
group decided that the easiest way to prove mission 

u

achievement is to break the process up into steps.   
These steps are:

•	 Review and understand agency mission               
statement;

•	 Identify mission categories;

•	 Identify related business models;

•	 Map existing Web services to business             
models; and

•	 Develop metrics that compliment business 
models.

Each step leads into the next.  By working through 
each step, Web managers will be able to determine 
which aspects of the site are most important and will 
be	able	to	match	metrics	to	these	specific	areas.

Step 1—Understand Mission   
 Statement 

The key to showing mission achievement is to 
first	have	a	comprehensive	understanding	of	the	
agency mission statement.  It is important to note that, 
although the topic here is “mission achievement,” the 
goals and purpose of an agency are not solely detailed 
within the agency’s mission.  Other important docu-
ments covering strategic planning and vision also 
contain pertinent information about an agency and 
should be included in this process.  The Web manager 
should review these documents and highlight words 
and phrases that are most important to the agency.

Example: To show that IRS.gov contributes to 
IRS mission achievement, the Web manager should 
gather the IRS mission statement, vision, and goals, as 
well as any other important documents or publications 
containing information on IRS goals.  By reviewing 
these documents, the Web manager would see that 
the IRS focuses on educating taxpayers about their 
tax obligations, ensuring that all taxpayers pay their 
fair share of taxes and that the agency concentrates on 
minimizing the amount it spends when collecting tax 
payments [4].  Key topics from this step are “educa-

u



- 73 -

tying Web Site Performance to miSSion acHievement

tion,”	“compliance,”	and	“fiscal	performance	and	cost	
containment.”

Step 2—Identify Mission Categories

Since the number of topics from the mission state-
ment and supporting documents can be quite large, 
the PMMA task group decided to group topics into 
mission categories to help generalize the process for 
all Federal agencies.  The mission categories are based 
on the “modes of delivery” as described in the Federal 
Enterprise Architecture’s Business Reference Model 
[5].  The “modes of delivery” detail the different ways 
in which the Government carries out its purpose.  This 
organization lends itself easily to the categorization of 
mission statements.

The modes are divided into two areas: Government 
service	delivery	and	financial	vehicles.		Government	
service delivery modes involve how agencies provide 
services	to	citizens,	while	financial	vehicle	modes	
involve monetary transactions.  Categories of Gov-
ernment service delivery modes are: knowledge and 
creation management; public goods creation and man-
agement; regulatory compliance and enforcement; and 
direct services for citizens.  Financial vehicle modes 
include:	Federal	finance	assistance;	credit	and	insur-
ance; and transfers to States and local governments.

Example:	The	IRS	Web	manager	identified	three	
topics in step one.  By referring to the guidance pro-
vided on mission categories, he or she would be able 
to	map	each	of	the	three	topics	identified	to	a	specific	
mission category.  The topics match as follows:

u

Step 3—Identify Business Models

Each mission category relates to various business 
models.  The PMMA task group created a matrix that 
allows Web managers to easily map mission catego-
ries to the business models with which they are most 
often associated.  The matrix also indicates how often 
each model is used to support a mission category (in-
dicated by: H-High, M-Medium, L-Low).  

It is important to note that some mission catego-
ries may share the same business models.  When this 
happens, the Web manager should pay special atten-
tion to the models that are repeated, since those are 
the ones most relevant to the agency’s mission.  The 
Web manager does not need to use all business models 
identified	in	this	step.		He	or	she	should	use	the	fre-
quency of use indicators to decide where to start.  

For certain agencies, business models that are 
used infrequently among Federal agencies may be 
more relevant than ones that are marked with medium 
or high.  In this case, the Web manager should focus 
on the more appropriate model, regardless of general 
usage frequency.

Example:	The	three	mission	categories	identified	
in the previous step relate to eight different business 
models: interactive tools, targeted education, e-com-
merce,	reduce	costs,	recruitment,	nonfinancial	trans-
actions, print forms available, and news/information.   
With so many models, the Web manager may feel 
overwhelmed and unsure where he or she should start.  
Within this list though, three models appear multiple 
times: targeted education (3), interactive tools (2), and 
e-commerce (2).  Since these occur multiple times, the 
Web manager should focus on these three models, at 
least at the beginning of the process.  Then, if the Web 
manager wants to explore more options, he or she can 
return to the full list.

Step 4—Match Web Services to   
 Business Models

Once	the	Web	manager	has	identified	the	business	
models on which he or she should focus, the next step 
is to evaluate existing Web site services and determine 
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which services complement each business model.  
These services will be the ones that the agency evalu-
ates, using results to show how the site contributes to 
mission achievement.  Web service types can include 
general information, publications and forms available 
for download, and customized tools designed to help 
the	customer	obtain	specific	information,	among	oth-
ers.  As previously stated, not all services on the Web 
site will directly support the agency’s mission.

Example:  The IRS.gov Web manager should 
focus on each model separately.  Beginning with tar-
geted education, he or she should compile a list of all 
items or areas of the site that are related to educating 
taxpayers.  This can include providing electronic ver-
sions of forms, publications, and instructions online, 
as well as tax tips.

For interactive tools, the manager should deter-
mine what, if any, tools are on IRS.gov.  Current inter-
active tools include: withholding calculator, alterna-
tive minimum tax assistant, and the refund status tool.

Finally, there is e-commerce.  IRS does not cur-
rently engage in e-commerce activities on its Web site.  
However,	it	does	provide	access	to	e-file	partners	and	
free	file	alliance	companies;	hence,	the	site	encour-
ages e-commerce.  And this type of activity enhances 
the IRS’s ability to collect tax revenue.  Therefore, 
the IRS Web manager should evaluate how the site is 
impacting tax collection.

Step 5—Select Appropriate   
 Performance Metrics

Now that the Web manager has made it through 
the	first	four	steps,	he	or	she	is	ready	and	prepared	
to start thinking about performance measures.  Hav-
ing completed the other steps in the process, the Web 
manager will be more familiar with the agency’s over-
all mission and goals and will be able to more easily 
identify metrics that will show mission achievement.

The PMMA task group recommends that Web 
managers use Victor Basili’s Goal Question Metric 
approach.		Using	this	method,	the	manager	first	sets	
a goal for each model and then derives questions for 
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each goal.  Finally, he or she will develop metrics 
for each question (most likely, there will be multiple 
metrics used to answer one question).

Once the manager has a metric in mind, he or she 
should ask the following two questions:  1) What will 
be done with this information? and 2) What kind of 
action will be taken based on this information?  If the 
answer is “nothing” or “none,” the metric is not worth 
tracking.  It is important that the information collected 
be of value to the organization.  If it is not, a different 
measure should be selected instead.

After a metric is selected, time must be spent to 
define	the	metric—what	it	covers,	what	should	be	col-
lected and how, and what do the results mean.  All of 
this should be done prior to implementation; however, 
it may be necessary to collect some information for a 
baseline	before	the	agency	can	define	results.

Example: Targeted Education

Goal: Reduce costs as a result of providing educa-
tional and instructional materials online.

Question: How do the costs for providing targeted 
education online compare with other materials?

Metric: The amount of money saved by not mailing 
hard-copy information.

Things to consider: Which materials should be 
included in this measure?  How much would it cost to 
send out each of the materials in this measure?

Data to collect: The number of downloads per each 
type included.

Savings: For each material, the cost of mailing the 
item multiplied by the number of downloads associ-
ated with each item.

Example: Interactive Tools

Goal: Reduce costs of processing paper versions by 
providing online tools for frequently requested items.
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Question: How much money is saved by customers 
using	online	tools	instead	of	filing	paper	requests?

Metric: The amount of money saved by customers us-
ing online tools as compared to using paper versions.

Things to consider: Which tools should be included 
in this measure?  How much would it cost to process 
hard copies of the items included in this measure?

Data to collect: The number of completed transac-
tions per each tool included.

Savings: For the number of times each tool was used, 
multiply the cost of the online tool and the cost of 
processing hard copies, separately.  Calculate the dif-
ference.

Example: E-commerce

Goal: Streamline and reduce the costs of the collec-
tion	of	tax	returns	through	increased	use	of	e-file.

Question: What are the direct cost savings from pro-
cessing electronic returns?

Metric: The amount of money saved by processing an 
e-file	return	instead	of	a	paper	return.

Things to consider: What aspects are involved in 
processing	both	e-file	and	paper	returns?		How	much	
does it cost to process a print return?  How much does 
it	cost	to	process	an	e-file	return?

Data to collect:	The	number	of	e-filed	returns.

Savings:	For	the	number	of	returns	e-filed,	multiply	
the	cost	of	processing	a	paper	return	and	an	e-filed	
return, separately.  Calculate the difference.

Next Steps

The process is not complete once the Web man-
ager	has	selected	metrics	related	to	agency-specific	
goals.  Although selecting these metrics was the as-
signed task, there are several other things that should 
be considered.  First, all terms associated with each 
metric	must	be	clearly	defined.		These	definitions	
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should	be	agreed	upon	and	deemed	official.		This	is	
key	because	loosely	defined	terms	may	lead	to	misin-
terpretation.

Limitations	for	each	metric	should	be	identified	
and clearly explained.  If a Web manager does not 
fully understand the limitations associated with each 
metric, the reported result may not be accurate, and 
misinterpretation will most likely occur.  While some 
limitations may have a small impact on data, oth-
ers may contribute to an agency’s inability to collect 
certain data.

Cookie usage is one of the most pressing limita-
tions for Federal Web sites.  A cookie is a small text 
file	placed	on	a	customer’s	computer	hard	drive	by	a	
Web	server.		This	file	allows	the	Web	server	to	iden-
tify individual computers—permitting a company to 
recognize returning users, track online purchases, or 
maintain and serve customized Web pages.

There are two types of cookies that can be used on 
a site: session cookies and persistent cookies.  Ses-
sion cookies have a short life-span; they are placed on 
the user’s computer when he or she lands on the site 
and expire shortly after the visit concludes.  Persistent 
cookies remain on the customer’s computer for much 
longer.		The	length	of	time	is	defined	by	the	Web	site,	
but could be 30 or more years.

The Federal Government generally prohibits the 
use of persistent cookies on all Government Web 
sites.  Federal agencies may be granted permission 
to use persistent cookies on their Web sites if they 
can demonstrate: “a compelling need to gather site 
user data; ensure appropriate and publicly disclosed 
privacy safeguards for handling site data, as well as 
information collected through cookies; and obtain 
personal approval by the agency head [6].”  While the 
first	two	requirements	are	relatively	easy	to	demon-
strate, the third one is not easy to obtain.  Within the 
Federal Government, there is a negative connotation 
associated with any cookie use, which makes it almost 
impossible to acquire personal approval for cookie 
usage from the head of an agency.  Without persistent 
cookies, Federal agencies cannot collect certain data 
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for metrics, including visit frequency, unique visitors, 
and	first-time	versus	repeat	visitors,	among	others.

Next, the Web manager should determine how 
often data for each metric should be collected.  Some-
times, it will make sense to assess metrics monthly, 
while other metrics may only need to be assessed on a 
quarterly or yearly basis.  For some metrics, it may be 
useful to collect data for a few different timeframes.  
This type of analysis may show different trends, or it 
may help determine what drives a certain trend.

Prior to data collection implementation, the 
agency should determine what will be done if a metric 
shows negative results.  It is important to determine 
the consequences for poor performance early on, 
instead of putting it off until it occurs.  Establishing 
a plan for how to handle negative results will help 
an agency quickly respond to (and hopefully recover 
from) poor performance results.

The Education Process

With the implementation of any new program, 
there should also be an education process.  Educa-
tion of both employees who work on the Web site and 
management who will use the results to make deci-
sions or present the information to others is essential 
when it comes to Web site performance metrics.  
Many people assume they know what the differ-
ent metrics mean, but they often do not have a good 
understanding of the terms, associated limitations, or 
interpretation issues that may exist.

“Web hits” are a prime example of why educa-
tion is important. Many people do not know what a 
Web hit is.  They assume that it is the leading metric 
that shows how many people come to a site in a given 
timeframe.  What they do not realize is that hits and 
visits are not synonymous.  A hit is any element called 
by a Web browser when requesting a Web page.  This 
includes images, animation, audio, video, downloads, 
documents, and the page itself, among other items.  
One single page may produce 30 or more hits each 
time	it	is	requested.		It	turns	out	that	this	inflated	
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number	has	no	significant	use	outside	of	showing	the	
Web manager what the server workload is like during 
a given timeframe.

When developing metrics, it is of the utmost im-
portance to spend time educating everyone who will 
be using the information.  This process is essential 
because misreported or misinterpreted data may lead 
to poor decisions, and will highlight a lack of under-
standing among the agency.

Developing a Report

Results from selected metrics should not be 
reported individually, but instead in a comprehensive 
report.  The type of report is up to the agency.  The 
report could be a single page, a detailed report that 
includes charts and graphs, a dashboard-style report, a 
balanced scorecard-style report, or any other style that 
matches the information presented.  Incorporating all 
Web site performance metrics into one report will help 
the audience see the global view of the Web site and 
how each aspect contributes to mission achievement.

It is always important to keep the audience in 
mind when deciding on the report style.  It may be 
necessary to develop a few different reports, each 
tailored to a different audience.  For example, agency 
executives who need this information may want a 
short report, perhaps a dashboard, while the Web man-
ager will most likely want as much detail as possible, 
requiring a very different report.

In any and all reports, data reported should be 
presented in a simple and clear manner.  Graphics and 
charts that are used in reports should be carefully con-
sidered; while some graphics look visually interesting, 
they	may	not	truly	reflect	the	results	and	may	mislead	
the audience, which could lead to poor decisionmaking.

In addition to the results, the report should also 
include	a	statement	of	intent,	definitions	for	all	metrics	
and associated terms, and explanations of all data 
collection and interpretation limitations.  Someone 

u
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changes, the performance metrics should change to ac-
commodate the new focus.  Web managers should also 
examine the metrics on an annual basis to determine if 
the information derived from the metrics is what was 
originally intended.  This will certify that statements 
included in performance reports are accurate.

By developing performance metrics that demon-
strate mission achievement, agencies will not only be 
able to assess the resources spent on Web sites, but 
will	also	prove	themselves	financially	responsible	to	
the American public.  In turn, this information will 
help	raise	the	public’s	confidence	in	the	Federal	Gov-
ernment as a whole.

Endnotes

[1]  The PMMA task group is an interagency group 
created by the Web Managers Advisory Council.

[2]  The full guide is available on the First Gov Web 
site:		http://www.firstgov.gov/webcontent/improv-
ing/evaluating/mission.shtml

[3]  Budget of The United States Government, Fiscal 
Year 2004.  Section: Rating the Performance of 
Federal Programs.  Available:  http://www.white-
house.gov/omb/budget/fy2004/performance.html

[4]  Department of Treasury (2005), Internal Revenue 
Service 2005 Data Book, Table 31. Available:  
http://www.irs.gov/pub/irs-soi/05db31ps.xls

[5]  FY07 Budget Formulation FEA Consolidated Ref-
erence Model Document (May 2005).  Available: 
http://www.whitehouse.gov/omb/egov/documents/
CRM.PDF

[6]		Office	of	Management	and	Budget	(2000),	“Cook-
ies Letter.” Available:  http://www.whitehouse.
gov/omb/inforeg/cookies_letter90500.html
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who fully understands the metrics should also provide 
some analysis of the results to help with interpreta-
tion.  These additional areas will help reinforce the 
education initially provided and will help ensure that 
decisions and actions taken based on the information 
in the report will be appropriate to the results shown.

Conclusions

Although the idea of linking Web site perfor-
mance measures to mission achievement sounds 
daunting, breaking the process into steps makes the 
task more straightforward.  Each step also builds the 
Web manager’s understanding of how the Web site 
relates to the agency’s mission; this will help the Web 
manager select the best metrics possible.

When it comes to showing mission achievement 
through performance measures, there is much more in-
volved than just selecting metrics and collecting data.  
Agencies must thoroughly understand the metrics they 
select, the data collection method they use, and any 
(and all) data collection and interpretation limitations 
that exist.  In addition, the agency should spend time 
educating end users of the results; everyone should 
understand what can and cannot be determined from 
the information collected.

Education is, and should be, a permanent part of 
this process.  After an initial explanation of the select-
ed performance measures package, the agency should 
continue	to	remind	users	of	definitions,	limitations,	
and interpretation issues by including explanations 
in all reports produced.  This is the best safeguard 
in ensuring that results will not be misinterpreted or 
misused.

Finally, agencies should continuously evaluate and 
reevaluate performance metrics.  If the agency’s focus 

u
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Comparing Strategies To Estimate a Measure 
of Heteroscedasticity

Kimberly Henry, Internal Revenue Service, and  
Richard Valliant, University of Michigan

E stimating totals is often a survey sampling objec-
tive. With a model-based approach, one factor 
that can affect the variance and bias of estimated 

totals is the superpopulation structure. We consider cases 
where a dependent variable’s variance is proportional to 
some power of the independent variable.  Various strate-
gies that are conceivable in this case include: (1) selection 
of a pilot sample to make preliminary structural param-
eter estimates, (2) selection of a main sample based on 
either pilot results or educated guesses about population 
parameters, and (3) use of either a model-based or design-
based estimator of the total. For various sample designs, 
sizes, and estimators, alternative strategies for estimating 
values of that variance power are compared for simulated 
population data.  The strategies’ effects on estimates of 
totals and their variances are then evaluated.  

This paper is organized into six sections. After the 
introduction, the second section contains descriptions of 
our superpopulation model and generated populations.    
The third section includes our simulation setup details, 
while results are discussed in the fourth section. Conclu-
sions, limitations, and future considerations are in the 
fifth	section	and	references	in	the	sixth	section.

	Superpopulation Model and 
Generated Populations

Model Theory

Given a study variable of interest     and an auxiliary 
variable     , we consider a superpopulation with the fol-
lowing structure:

  (2.1)

The      ’s are assumed to be known for each unit i in 
the	finite	population.	The	exponent								in	model	(2.1)’s	
conditional variance has been referred to as a measure 
of heteroscedasticity (Foreman, 1995), or coefficient 
of heteroscedasticity (Brewer, 2002).  This parameter 
is of interest since a reasonable      estimate produces 

nearly optimal sample designs and estimators of totals 
and their variances (Theorem 4.2.1, Valliant, Dorfman, 
and Royall, 2000).  

Applications of models like (2.1) include companies 
using cost segregation to report depreciable assets on 
their Internal Revenue Service Tax Form 1120 (e.g., 
Allen and Foster, 2005 and Strobel, 2002) and compar-
ing inventory data values versus actual values (e.g., 
Roshwalb, 1987 and Godfrey et al., 1984).

Given generated population data, our goal is to use 
various strategies to draw samples and estimate        from 
them, then examine the impact of these strategies on the 
estimation of totals and their variances.

Generated Populations

We	created	two	unstratified	versions	of	the	popula-
tion described in Hansen et al. (1983, denoted HMT here-
after), since it follows model (2.1).  We chose       equal 
to 3/4 and 2 for populations of 10,000 units.  Figures 
1 and 2 show the population         for each generated 
population (note a difference in Y-scales):

                                       

   

The	first	population	has	a	relatively	strong	depen-
dence between    and    , while the second one has a 
much weaker relationship. Note that these populations 
have a small non-zero intercept, which resulted in some 
model-based estimators being biased in the earlier HMT 
study.
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results are discussed in Section 4. Conclusions, 
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The first population has a relatively strong dependence 
between y  and x , while the second one has a much 
weaker relationship. Note that these populations have a 
small non-zero intercept, which resulted in some model-
based estimators being biased in the earlier HMT study. 

3. Simulation Setup 

This section describes the details of our simulation study, 
including working models, sample designs, simulation 
strategies, and the method of estimating .

3.1: Models 
Using Valliant et. al’s (2000) notation, we based 
estimators of totals on the following two working models 
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Sample Designs

For each unit       in the population, we consider four 
without replacement (wor) sample designs:

(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with prob-

abilities of selection proportional to a measure of 
size (MOS).

(3) ppstrat: strata are formed in the population by cumu-
lating an MOS and forming strata with equal total 
size. An  srswor of one unit is selected from each 
stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor 
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of       .

For each of these designs, we drew 1,000 samples 
of 100 and 500 units.  When the MOS is       , the ppstrat 
design approximates optimal             selection and wtd 
bal							sampling.		It	is	similar	to	“deep	stratification”	
(e.g., Bryant et al., 1960; Cochran, 1977, pp. 124-126; 
Sitter and Skinner, 1994), which is used in accounting ap-
plications	(Batcher	and	Liu,	2002).	More	specific	details	
on these designs are given in pages 66-67 of Valliant et 
al. (2000).

Strategies

The strategies we examined consisted of selecting a 
pilot study to get a preliminary estimate of     followed 
by a main sample or only selecting a main sample.  Both 
options were crossed with the possibility of round-
ing     or not.  Thus, our main comparisons concern four 
strategies:

A:  draw a               pilot of 50 units, estimate    , and 
select a main sample using                ,  ppstrat           , 
and wtd bal           samples.

B:  draw srswor,  ppswor          , ppstrat          , and wtd 
bal        main samples only and estimate     in 
each.

C:  strategy A, rounding       to the nearest one-half.
D:  strategy B,  rounding      to the nearest one-half.

By	definition,	there	is	no	srswor used for strategies 
A and C. Also, B and D correspond to assuming                                          

Model (3.1) is the correct working model, i.e., the one 
equivalent to model (2.1). Model (3.2) is associated 
with the following superpopulation structure: 

/ 2
1/ 2 1( | )M i i i iE y x x x

   iiiM xxyVar 2)|(  (3.3) 

Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
( | )M i iE y x  is a linear combination of auxiliaries, one of 

which is ix , two important optimality results hold: (1) 
The selection probabilities that minimize the anticipated 
variance of the general regression (GREG) estimator 
are proportional to ix  (Särndal, Swensson, and 
Wretman 1992, sec. 12.2). (2) The optimal model-based 
sample will have a certain type of weighted balance that 
also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 

3.2: Sample Designs 
For each unit i  in the population, we consider four 
without replacement (wor) sample designs: 
(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with 

probabilities of selection proportional to a measure 
of size (MOS). 

(3) ppstrat: strata are formed in the population by 
cumulating an MOS and forming strata with equal 
total size. An  srswor of one unit is selected from 
each stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of ix .

For each of these designs, we drew 1,000 samples of 
100 and 500 units.  When the MOS is ˆx , the ppstrat
design approximates optimal pp( x ) selection and wtd 
bal x  sampling.  It is similar to “deep stratification” 

(e.g, Bryant et al. 1960; Cochran 1977 pp. 124-126; 
Sitter and Skinner 1994), which is used in accounting 
applications (Batcher and Liu 2002). More specific 
details on these designs are given in pages 66-67 of 
Valliant et al. (2000). 

3.3: Strategies 
The strategies we examined consisted of selecting a pilot 
study to get a preliminary estimate of  followed by a 
main sample or only selecting a main sample.  Both 
options were crossed with the possibility of rounding 
or not.  Thus, our main comparisons concern four 
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C. Also, B and D correspond to assuming 1  for 
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does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
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fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 
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and repeated the process until ˆ  stabilized. 
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which are unrealistic. Table 1 shows the number of these 
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population (there were none of these cases for the  
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1. Introduction  

Estimating totals is often a survey sampling objective. 
With a model-based approach, one factor that can affect 
the variance and bias of estimated totals is the 
superpopulation structure. We consider cases where a 
dependent variable's variance is proportional to some 
power of the independent variable.  Various strategies 
that are conceivable in this case include: (1) selection of 
a pilot sample to make preliminary structural parameter 
estimates, (2) selection of a main sample based on 
either pilot results or educated guesses about population 
parameters, and (3) use of either a model-based or 
design-based estimator of the total. For various sample 
designs, sizes, and estimators, alternative strategies for 
estimating values of that variance power are compared 
for simulated population data.  The strategies’ effects 
on estimates of totals and their variances are then 
evaluated.   

This paper is organized into six sections. After the 
introduction, Section 2 contains descriptions of our 
superpopulation model and generated populations.  
Section 3 includes our simulation setup details, while 
results are discussed in Section 4. Conclusions, 
limitations, and future considerations are in Section 5 
and references in Section 6. 

2. Superpopulation Model and Generated 
Populations 

2.1: Model Theory 
Given a study variable of interest Y  and an auxiliary 
variable X , we consider a superpopulation with the 
following structure: 

iiiM xxyE 10)|(

iiiM xxyVar 2)|(                   (2.1) 
The ix ’s are assumed to be known for each unit i in the 
finite population. The exponent  in model (2.1)’s 
conditional variance has been referred to as a measure 
of heteroscedasticity (Foreman 1995), or coefficient of 
heteroscedasticity (Brewer 2002).  This parameter is of 
interest since a reasonable  estimate produces nearly 
optimal sample designs and estimators of totals and 
their variances (Theorem 4.2.1, Valliant, Dorfman, and 
Royall 2000).   

Applications of models like (2.1) include 
companies using cost segregation to report depreciable 
assets on their Internal Revenue Service Tax Form 1120 

(e.g., Allen and Foster 2005 and Strobel 2002) and 
comparing inventory data values versus actual values 
(e.g., Roshwalb 1987 and Godfrey et al. 1984). 

Given generated population data, our goal is to use 
various strategies to draw samples and estimate  from 
them, then examine the impact of these strategies on the 
estimation of totals and their variances. 

2.2: Generated Populations 
We created two unstratified versions of the population 
described in Hansen et al. (1983, denoted HMT 
hereafter), since it follows model (2.1).  We chose 
equal to 3/4 and 2 for populations of 10,000 units.  
Figures 1 and 2 show the population ,X Y  for each 
generated population (note a difference in Y-scales): 

         Figure 1: Generated Populations 
     3/ 4                                 2

The first population has a relatively strong dependence 
between y  and x , while the second one has a much 
weaker relationship. Note that these populations have a 
small non-zero intercept, which resulted in some model-
based estimators being biased in the earlier HMT study. 

3. Simulation Setup 

This section describes the details of our simulation study, 
including working models, sample designs, simulation 
strategies, and the method of estimating .

3.1: Models 
Using Valliant et. al’s (2000) notation, we based 
estimators of totals on the following two working models 

):1,1( xM  (3.1) 
):,( 2/ xxxM  (3.2) 
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Model (3.1) is the correct working model, i.e., the one 
equivalent to model (2.1). Model (3.2) is associated 
with the following superpopulation structure: 
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Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
( | )M i iE y x  is a linear combination of auxiliaries, one of 

which is ix , two important optimality results hold: (1) 
The selection probabilities that minimize the anticipated 
variance of the general regression (GREG) estimator 
are proportional to ix  (Särndal, Swensson, and 
Wretman 1992, sec. 12.2). (2) The optimal model-based 
sample will have a certain type of weighted balance that 
also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 

3.2: Sample Designs 
For each unit i  in the population, we consider four 
without replacement (wor) sample designs: 
(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with 

probabilities of selection proportional to a measure 
of size (MOS). 

(3) ppstrat: strata are formed in the population by 
cumulating an MOS and forming strata with equal 
total size. An  srswor of one unit is selected from 
each stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of ix .

For each of these designs, we drew 1,000 samples of 
100 and 500 units.  When the MOS is ˆx , the ppstrat
design approximates optimal pp( x ) selection and wtd 
bal x  sampling.  It is similar to “deep stratification” 

(e.g, Bryant et al. 1960; Cochran 1977 pp. 124-126; 
Sitter and Skinner 1994), which is used in accounting 
applications (Batcher and Liu 2002). More specific 
details on these designs are given in pages 66-67 of 
Valliant et al. (2000). 

3.3: Strategies 
The strategies we examined consisted of selecting a pilot 
study to get a preliminary estimate of  followed by a 
main sample or only selecting a main sample.  Both 
options were crossed with the possibility of rounding 
or not.  Thus, our main comparisons concern four 
strategies: 

A: draw a  pp )( x  pilot of 50 units, estimate , and 
select a main sample using pp ( ˆx ), ppstrat ( ˆx ),
and wtd bal ( ˆx ) samples. 
B: draw srswor,  ppswor )( x , ppstrat )( x , and wtd 
bal  ( x ) main samples only and estimate  in each. 
C: strategy A, rounding ˆ  to the nearest one-half. 
D: strategy B,  rounding ˆ  to the nearest one-half. 

By definition, there is no srswor used for strategies A and 
C. Also, B and D correspond to assuming 1  for 
selecting the ppswor, ppstrat, and wtd bal samples, which 
does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
estimates of totals and variances.  

3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 

For all strategies, if ˆ 0 , then it was forced to one, 
which corresponds to pp )( x  sampling. Rejected 
alternatives included forcing ˆ 0 , implying 
homoscedasticity, or dropping these samples, both of 
which are unrealistic. Table 1 shows the number of these 
occurrences for the 3 / 4  population (there were less 
than 5 cases for each strategy for the 2 population). 
Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  

3 / 4  population). 

Model (3.1) is the correct working model, i.e., the one 
equivalent to model (2.1). Model (3.2) is associated 
with the following superpopulation structure: 
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(4) wtd bal: weighted balanced sampling.  Ppswor
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or not.  Thus, our main comparisons concern four 
strategies: 

A: draw a  pp )( x  pilot of 50 units, estimate , and 
select a main sample using pp ( ˆx ), ppstrat ( ˆx ),
and wtd bal ( ˆx ) samples. 
B: draw srswor,  ppswor )( x , ppstrat )( x , and wtd 
bal  ( x ) main samples only and estimate  in each. 
C: strategy A, rounding ˆ  to the nearest one-half. 
D: strategy B,  rounding ˆ  to the nearest one-half. 

By definition, there is no srswor used for strategies A and 
C. Also, B and D correspond to assuming 1  for 
selecting the ppswor, ppstrat, and wtd bal samples, which 
does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
estimates of totals and variances.  

3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 

For all strategies, if ˆ 0 , then it was forced to one, 
which corresponds to pp )( x  sampling. Rejected 
alternatives included forcing ˆ 0 , implying 
homoscedasticity, or dropping these samples, both of 
which are unrealistic. Table 1 shows the number of these 
occurrences for the 3 / 4  population (there were less 
than 5 cases for each strategy for the 2 population). 
Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  

3 / 4  population). 



- 83 -

comParing StrategieS to eStimate a meaSure of HeteroScedaSticity
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see if reducing variability in the     ’s leads to improved 
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To estimate     , following Roshwalb (1987), we 
iteratively	fit	a	given	working	model	and	regressed	the	
log of the squared residuals on             as follows:

 

and repeated the process until     stabilized.

For all strategies, if           , then it was forced to  
one, which corresponds to              sampling. Rejected 
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unrealistic. Table 1 shows the number of these occur-
rences for the                population (there were less than 
5 cases for each strategy for the            population). Also, 
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three to avoid unreasonably large    ’s.  Table 2 contains 
the number of these occurrences for the             population 
(there were none of these cases for the                 popu-
lation).
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wtd bal 
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ppswor 
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129 (20) 
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 n=100 n=500 n=100 n=500 
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0
0
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3
5
5
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Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
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2
2
1
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0
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0
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2
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3
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0
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0
1
0
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0
0
0
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Estimation of Totals
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Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators 
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Model (3.1) is the correct working model, i.e., the one 
equivalent to model (2.1). Model (3.2) is associated 
with the following superpopulation structure: 
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Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
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also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 

3.2: Sample Designs 
For each unit i  in the population, we consider four 
without replacement (wor) sample designs: 
(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with 

probabilities of selection proportional to a measure 
of size (MOS). 

(3) ppstrat: strata are formed in the population by 
cumulating an MOS and forming strata with equal 
total size. An  srswor of one unit is selected from 
each stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of ix .

For each of these designs, we drew 1,000 samples of 
100 and 500 units.  When the MOS is ˆx , the ppstrat
design approximates optimal pp( x ) selection and wtd 
bal x  sampling.  It is similar to “deep stratification” 

(e.g, Bryant et al. 1960; Cochran 1977 pp. 124-126; 
Sitter and Skinner 1994), which is used in accounting 
applications (Batcher and Liu 2002). More specific 
details on these designs are given in pages 66-67 of 
Valliant et al. (2000). 

3.3: Strategies 
The strategies we examined consisted of selecting a pilot 
study to get a preliminary estimate of  followed by a 
main sample or only selecting a main sample.  Both 
options were crossed with the possibility of rounding 
or not.  Thus, our main comparisons concern four 
strategies: 

A: draw a  pp )( x  pilot of 50 units, estimate , and 
select a main sample using pp ( ˆx ), ppstrat ( ˆx ),
and wtd bal ( ˆx ) samples. 
B: draw srswor,  ppswor )( x , ppstrat )( x , and wtd 
bal  ( x ) main samples only and estimate  in each. 
C: strategy A, rounding ˆ  to the nearest one-half. 
D: strategy B,  rounding ˆ  to the nearest one-half. 

By definition, there is no srswor used for strategies A and 
C. Also, B and D correspond to assuming 1  for 
selecting the ppswor, ppstrat, and wtd bal samples, which 
does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
estimates of totals and variances.  

3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 

For all strategies, if ˆ 0 , then it was forced to one, 
which corresponds to pp )( x  sampling. Rejected 
alternatives included forcing ˆ 0 , implying 
homoscedasticity, or dropping these samples, both of 
which are unrealistic. Table 1 shows the number of these 
occurrences for the 3 / 4  population (there were less 
than 5 cases for each strategy for the 2 population). 
Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  
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C. Also, B and D correspond to assuming 1  for 
selecting the ppswor, ppstrat, and wtd bal samples, which 
does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
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than 5 cases for each strategy for the 2 population). 
Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  
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than 5 cases for each strategy for the 2 population). 
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contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  
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Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
( | )M i iE y x  is a linear combination of auxiliaries, one of 

which is ix , two important optimality results hold: (1) 
The selection probabilities that minimize the anticipated 
variance of the general regression (GREG) estimator 
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Wretman 1992, sec. 12.2). (2) The optimal model-based 
sample will have a certain type of weighted balance that 
also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).
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total size. An  srswor of one unit is selected from 
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samples using an MOS are selected that satisfy 
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100 and 500 units.  When the MOS is ˆx , the ppstrat
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Table 1: Number of Times ˆ 1 , 3/ 4  Population

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

52
56
60

67
56
59

159 
164 
167 

171 
199 
181 

C
ppswor 
ppstrat 
wtd bal 

157 (18) 
129 (20) 
136 (24) 

134 (28) 
150 (25) 
142 (24) 

263 (98) 
256 (83) 
252 (63) 

243 (122) 
275 (114) 
267 (105) 

 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

8
16
11
12

0
0
0
0

68
93
81
92

3
5
5
3

D

srswor
ppswor 
ppstrat 
wtd bal 

43 (2) 
67 (2) 
53 (2) 
59 (2) 

0
0
0
0

158 (40) 
179 (52) 
191 (50) 
184 (52) 

30 (0) 
43 (1) 
23 (0) 
34 (0) 

Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81

73
51
63

21
22
28

21
18
24

C
ppswor 
ppstrat 
wtd bal 

39
32
27

46
36
32

9
8

14

6
8

10
 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

7
7

12
5

0
0
0
0

2
2
1
3

0
0
0
0

D

srswor
ppswor 
ppstrat 
wtd bal 

2
2
3
2

0
0
0
0

0
1
0
1

0
0
0
0

In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:

2
0

ˆvar ( ) / 1/ /1 /
1 i i i ii s i sT y n y

nn N
n

.

This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
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include cases where small positive ˆ ’s were rounded 
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number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  
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We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 
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where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:

2
0

ˆvar ( ) / 1/ /1 /
1 i i i ii s i sT y n y

nn N
n

.

This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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 The general form of the GREG estimator is 
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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The general form of the BLUP estimator is 
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where ˆ
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sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
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 The general form of the GREG estimator is 
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where ig  is the “g-weight” for unit i (Särndal et. al,
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models and true value of  and estimates of  lead to 
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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0
0
0
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158 (40) 
179 (52) 
191 (50) 
184 (52) 

30 (0) 
43 (1) 
23 (0) 
34 (0) 

Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81

73
51
63

21
22
28
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18
24

C
ppswor 
ppstrat 
wtd bal 

39
32
27

46
36
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9
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D

srswor
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2
2
3
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0
0
0

0
1
0
1

0
0
0
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:

2
0

ˆvar ( ) / 1/ /1 /
1 i i i ii s i sT y n y

nn N
n

.

This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 

Table 1: Number of Times ˆ 1 , 3/ 4  Population

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 
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67 (2) 
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59 (2) 
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0
0
0

158 (40) 
179 (52) 
191 (50) 
184 (52) 

30 (0) 
43 (1) 
23 (0) 
34 (0) 

Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81
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51
63

21
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28

21
18
24

C
ppswor 
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39
32
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36
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 

Table 1—Number of Times ˆ 1 , 3/ 4  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

52
56
60

67
56
59
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164 
167 

171 
199 
181 

C
ppswor 
ppstrat 
wtd bal 

157 (18) 
129 (20) 
136 (24) 

134 (28) 
150 (25) 
142 (24) 

263 (98) 
256 (83) 
252 (63) 

243 (122) 
275 (114) 
267 (105) 
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8
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12

0
0
0
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3
5
5
3

D
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43 (2) 
67 (2) 
53 (2) 
59 (2) 

0
0
0
0

158 (40) 
179 (52) 
191 (50) 
184 (52) 

30 (0) 
43 (1) 
23 (0) 
34 (0) 

Table 2—Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81

73
51
63

21
22
28

21
18
24

C
ppswor 
ppstrat 
wtd bal 

39
32
27

46
36
32

9
8
14

6
8
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 n=100 n=500 n=100 n=500 
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7
7
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5

0
0
0
0

2
2
1
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0
0
0
0

D
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ppswor 
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2
2
3
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0
0
0
0

0
1
0
1

0
0
0
0

Model (3.1) is the correct working model, i.e., the one 
equivalent to model (2.1). Model (3.2) is associated 
with the following superpopulation structure: 

/ 2
1/ 2 1( | )M i i i iE y x x x

   iiiM xxyVar 2)|(  (3.3) 

Working model (3.3) is called the minimal model
(Valliant et. al. 2000, p. 100) associated with the above 
conditional variance.  If (2.1) were unknown, but the 
intercept is small, working model (3.3) may be a 
reasonable starting place for determining a sample size. 

When the variance of iy  is proportional to ix  and 
( | )M i iE y x  is a linear combination of auxiliaries, one of 

which is ix , two important optimality results hold: (1) 
The selection probabilities that minimize the anticipated 
variance of the general regression (GREG) estimator 
are proportional to ix  (Särndal, Swensson, and 
Wretman 1992, sec. 12.2). (2) The optimal model-based 
sample will have a certain type of weighted balance that 
also depends on ix  (Valliant et al. 2000, sec. 4.2.1).  
An optimal, weighted balanced sample can be 
approximated by a probability-proportional-to- ix
sample, denoted  pp( x ).

There is often a huge incentive to use optimal 
samples and estimators in the applications we consider 
due to high data collection costs.  In a cost segregation 
study, for example, experts may be needed to assign 
capital goods to depreciation classes (e.g., 5, 7, 15, or 
39-year).  Assessments can be time-consuming and 
expensive; so, the smaller the sample size that yields 
desired precision, the better. 

3.2: Sample Designs 
For each unit i  in the population, we consider four 
without replacement (wor) sample designs: 
(1) srswor: simple random sampling.
(2) ppswor: the Hartley-Rao (1962) method with 

probabilities of selection proportional to a measure 
of size (MOS). 

(3) ppstrat: strata are formed in the population by 
cumulating an MOS and forming strata with equal 
total size. An  srswor of one unit is selected from 
each stratum.

(4) wtd bal: weighted balanced sampling.  Ppswor
samples using an MOS are selected that satisfy 
particular conditions on the population and sample 
moments of ix .

For each of these designs, we drew 1,000 samples of 
100 and 500 units.  When the MOS is ˆx , the ppstrat
design approximates optimal pp( x ) selection and wtd 
bal x  sampling.  It is similar to “deep stratification” 

(e.g, Bryant et al. 1960; Cochran 1977 pp. 124-126; 
Sitter and Skinner 1994), which is used in accounting 
applications (Batcher and Liu 2002). More specific 
details on these designs are given in pages 66-67 of 
Valliant et al. (2000). 

3.3: Strategies 
The strategies we examined consisted of selecting a pilot 
study to get a preliminary estimate of  followed by a 
main sample or only selecting a main sample.  Both 
options were crossed with the possibility of rounding 
or not.  Thus, our main comparisons concern four 
strategies: 

A: draw a  pp )( x  pilot of 50 units, estimate , and 
select a main sample using pp ( ˆx ), ppstrat ( ˆx ),
and wtd bal ( ˆx ) samples. 
B: draw srswor,  ppswor )( x , ppstrat )( x , and wtd 
bal  ( x ) main samples only and estimate  in each. 
C: strategy A, rounding ˆ  to the nearest one-half. 
D: strategy B,  rounding ˆ  to the nearest one-half. 

By definition, there is no srswor used for strategies A and 
C. Also, B and D correspond to assuming 1  for 
selecting the ppswor, ppstrat, and wtd bal samples, which 
does not match our population ’s, but will be a 
reasonable advance choice for sampling in many 
populations.  We consider the rounding in C and D to see 
if reducing variability in the ˆ ’s leads to improved 
estimates of totals and variances.  

3.4: Estimation of 
To estimate , following Roshwalb (1987), we iteratively 
fit a given working model and regressed the log of the 
squared residuals on log( )x  as follows: 

2log( ) log( )i ir x ,
and repeated the process until ˆ  stabilized. 

For all strategies, if ˆ 0 , then it was forced to one, 
which corresponds to pp )( x  sampling. Rejected 
alternatives included forcing ˆ 0 , implying 
homoscedasticity, or dropping these samples, both of 
which are unrealistic. Table 1 shows the number of these 
occurrences for the 3 / 4  population (there were less 
than 5 cases for each strategy for the 2 population). 
Also, for all strategies, if ˆ 3 ,  then it was forced to 
equal three to avoid unreasonably large ˆ ’s.  Table 2 
contains the number of these occurrences for the ˆ 2
population (there were none of these cases for the  

3 / 4  population). 
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in the sample (denoted by          ) and       is estimated 
using the sample units (         ). For example, following  
Valliant et al.’s (2000) notation, the BLUP using the 
correct model is

 

where                                                            matrix with 
rows                                              is the n-vector of 
sample data.

The general form of the GREG estimator is

where      is the “g-weight” for unit i (Särndal et al., 
1992).

These estimators combined with the two working 
models and true value of       and estimates of      lead to 
nine totals.  For model (3.1), we have                   and   
                        The estimators               
                                                                               and  
are                           for model (3.2).          is the ninth.  
Note that the true        is not available in any real situation; 
estimators computed using        serve as a comparison 
standard for the other choices.

Variance Estimation

For the HT estimator, the variance estimator is:

This variance expression assumes with replace-
ment	sampling,	but	uses	the	finite	population	correction	
adjustment                to approximately account for wor 
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter, 1985, sec. 2.4.5).

The following is the basic model variance estimate 
for the BLUP estimators:

 

where       is the “model weight” involving       in the 
working model and        is the residual for unit i.

We also include a robust leverage-adjusted variance 
estimate for the BLUP’s:

where         is the leverage for unit i.  The identical second 
term in both model variances accounts for variability in 
population units not in the sample. 

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant, 2002, expression 2.4):

 

The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the HT 
and GREG estimators, where successive pairs of sample 
units were grouped, variances were calculated within 
each stratum, and strata variances were cumulated. Since 
both	working	models	were	specified	over	all	strata,	the	
model variance formulae          and         were used for 
samples selected using ppstrat sampling in estimating 
the variance of the BLUP.

	Simulation Results

Estimates
We calculated the average    over each set of 1,000 

samples drawn from both populations.  Results are only 
summarized here. 

When                     strategies B and D had more nearly 
unbiased estimates than A and C due to the smaller pilot 
sample sizes in the latter two.  The rounding in strate-
gies C and D made the average       further from the 
true value, since        close to three-fourths were either 
rounded down to one-half or up to one. 

When             the average        were closer to the 
true values.  There was not much difference between the 
average          for the pilot study strategies A and C versus 
the no-pilot strategies B and D.  The rounding also did 
not make much of a difference. Using the correct model 
(3.1) rather than (3.2) resulted in          closer to the true 
value, as might be expected.

Table 1: Number of Times ˆ 1 , 3/ 4  Population

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 
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wtd bal 

52
56
60

67
56
59

159 
164 
167 

171 
199 
181 

C
ppswor 
ppstrat 
wtd bal 

157 (18) 
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184 (52) 
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34 (0) 

Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 
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61
81
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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Table 2: Number of Times ˆ 3 , 2  Population 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  
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Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 
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where 1ˆ ( )-1 -1
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rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
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These estimators combined with the two working 
models and true value of  and estimates of  lead to 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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The general form of the BLUP estimator is 
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where ˆ
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sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

52
56
60

67
56
59

159 
164 
167 

171 
199 
181 

C
ppswor 
ppstrat 
wtd bal 

157 (18) 
129 (20) 
136 (24) 

134 (28) 
150 (25) 
142 (24) 

263 (98) 
256 (83) 
252 (63) 

243 (122) 
275 (114) 
267 (105) 

 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

8
16
11
12

0
0
0
0

68
93
81
92

3
5
5
3

D

srswor
ppswor 
ppstrat 
wtd bal 

43 (2) 
67 (2) 
53 (2) 
59 (2) 

0
0
0
0

158 (40) 
179 (52) 
191 (50) 
184 (52) 

30 (0) 
43 (1) 
23 (0) 
34 (0) 

Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81

73
51
63

21
22
28

21
18
24

C
ppswor 
ppstrat 
wtd bal 

39
32
27

46
36
32

9
8

14

6
8

10
 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

7
7

12
5

0
0
0
0

2
2
1
3

0
0
0
0

D

srswor
ppswor 
ppstrat 
wtd bal 

2
2
3
2

0
0
0
0

0
1
0
1

0
0
0
0

In Table 1, strategies A and B’s numbers are the 
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number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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The general form of the BLUP estimator is 
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where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 
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where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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The general form of the BLUP estimator is 
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where ˆ
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sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 
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where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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include cases where small positive ˆ ’s were rounded 
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D leads to fewer negative estimates than in A and B, 
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Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  
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We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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The general form of the BLUP estimator is 
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where ˆ
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sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 
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where 1ˆ ( )-1 -1
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rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:

2
0

ˆvar ( ) / 1/ /1 /
1 i i i ii s i sT y n y

nn N
n

.

This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 
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i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 
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The general form of the BLUP estimator is 
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where ˆ
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sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 
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ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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ˆvar ( ) / 1/ /1 /
1 i i i ii s i sT y n y

nn N
n

.

This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 

Table 1: Number of Times ˆ 1 , 3/ 4  Population

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

52
56
60

67
56
59

159 
164 
167 

171 
199 
181 

C
ppswor 
ppstrat 
wtd bal 

157 (18) 
129 (20) 
136 (24) 

134 (28) 
150 (25) 
142 (24) 

263 (98) 
256 (83) 
252 (63) 

243 (122) 
275 (114) 
267 (105) 

 n=100 n=500 n=100 n=500 

B

srswor
ppswor 
ppstrat 
wtd bal 

8
16
11
12

0
0
0
0

68
93
81
92

3
5
5
3

D

srswor
ppswor 
ppstrat 
wtd bal 

43 (2) 
67 (2) 
53 (2) 
59 (2) 

0
0
0
0

158 (40) 
179 (52) 
191 (50) 
184 (52) 

30 (0) 
43 (1) 
23 (0) 
34 (0) 

Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81

73
51
63

21
22
28

21
18
24

C
ppswor 
ppstrat 
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27
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36
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9
8
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6
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 n=100 n=500 n=100 n=500 
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wtd bal 

7
7

12
5

0
0
0
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2
2
1
3

0
0
0
0
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ppswor 
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wtd bal 

2
2
3
2

0
0
0
0

0
1
0
1

0
0
0
0

In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 

Table 1: Number of Times ˆ 1 , 3/ 4  Population
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C
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184 (52) 
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Table 2: Number of Times ˆ 3 , 2  Population 

Strategy Design ):1,1( xM / 2( , : )M x x x
  pilot n=50 pilot n=50 

A
ppswor 
ppstrat 
wtd bal 

73
61
81
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51
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21
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28
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24
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In Table 1, strategies A and B’s numbers are the 
number of negative ˆ ’s.  For C and D, the numbers 
include cases where small positive ˆ ’s were rounded 
down to zero.  The numbers in parentheses are the 
number of negative ˆ ’s.  The rounding used for C and 
D leads to fewer negative estimates than in A and B, 
but rounding does not offer overall improvement. 
Strategies B and D produced fewer negative ˆ ’s than A 
and C since B and D use 100 and 500 units, as opposed 
to pilot samples of size 50 in A and C.  Also, depending 
on the strategy, there were at least three times as many  
negative ˆ ’s using model (3.2) versus using (3.1).

In Table 2, Strategies B and D produced fewer large ˆ ’s 
than A and C. Rounding in C and D also produced fewer 
large ˆ ’s. There were at least twice as many large ˆ ’s 
when using model  (3.1) versus model (3.2).  

3.5: Estimation of Totals 
We consider three kinds of estimators for totals: the 
Horvitz-Thompson (HT) estimator, best linear unbiased 
predictors (BLUP), and general regression estimators
(GREG).  The HT estimator is given by 

ˆ
i ii sT y ,

where i  is the probability of selection for unit i.
The general form of the BLUP estimator is 

ˆˆ
i ii s i s

T y x  , 

where ˆ
ix  is the prediction for iy  using the working 

model and set of units in the population that are not in the 
sample (denoted by i s ) and ˆ  is estimated using the 
sample units ( i s ). For example, following Valliant et
al.’s (2000) notation, the BLUP using the correct model is 

ˆ(1,1 : ) i ii s i sT x y x ,

where 1ˆ ( )-1 -1
s ss s s ss sX V X X V y , sX  is an nx2 matrix with 

rows (1, )ix , ( )idiag xssV , and sy  is the n-vector of 
sample data. 
 The general form of the GREG estimator is 

ĜR i ii sT g y ,
where ig  is the “g-weight” for unit i (Särndal et. al,
1992). 

These estimators combined with the two working 
models and true value of  and estimates of  lead to 

nine totals.  For model (3.1), we have ˆ (1,1 : )T x ,
ˆˆ (1,1 : )T x , ˆ (1,1 : )GRT x , and ˆˆ (1,1 : )GRT x . The estimators 

/ 2ˆ ( , : )T x x x , ˆ ˆ ˆ/ 2ˆ ( , : )T x x x , / 2ˆ ( , : )GRT x x x , and 
ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are for model (3.2).  T̂  is the ninth.  

Note that the true  is not available in any real situation; 
estimators computed using  serve as a comparison 
standard for the other choices. 

3.6: Variance Estimation 
For the HT estimator, the variance estimator is:
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This variance expression assumes with replacement 
sampling, but uses the finite population correction 
adjustment 1 /n N  to approximately account for wor
sampling.  Since the sampling fractions are small, the 
bias is negligible (Wolter 1985, sec. 2.4.5). 

The following is the basic model variance estimate 
for the BLUP estimators: 

12 2 2
1

ˆvar ( ) i i ii s i s i s i si iT a r x x r ,

where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 

2 2

3 2
ˆvar ( ) 1 i i
GR i s

i

n g rT
N

2 2

4 2
ˆvar ( ) 1

(1 )
i i

GR i s
i ii

n g rT
N h

.

The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 

12 2 2
1

ˆvar ( ) i i ii s i s i s i si iT a r x x r ,

where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 

12 2 2
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  



- 85 -

comParing StrategieS to eStimate a meaSure of HeteroScedaSticity

Total and Variance Estimates

Our primary focus is how estimating        effects 
estimates of totals and their variances.  Tables 5 and 6 at 
the end of this paper include the root mean square error 
(RMSE)	and	95-percent	confidence	interval	(CI)	cover-
age of each of the nine total estimators based on samples 
of size 100 drawn from the                                  popula-
tions, respectively (similar generalizations held for the 
samples of size 500, which are omitted due to length).  
Both tables are organized such that the HT estimates are 
first,	followed	by	the	BLUP	and	GREG	totals	produced	
using the true       value (which resulted in identical results 
for strategies B and D), then those that used        Rela-
tive biases (Relbias) are not shown in the tables but are 
briefly	mentioned	below.		

For the             population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value 
was -0.41 percent for                        using strategy B 
and wtd bal           samples.  For all strategies, using the 
correct working model (2.1) versus model (3.2) resulted 
in lower Relbias and RMSE values and CI coverage 
closer to 95 percent, though differences are not drastic.  
With model (3.2), using the GREG estimator resulted in 
improvements in all three measures over the equivalent 
BLUP estimators.  Comparing strategies, there are slight 
improvements in the Relbias, RMSE, and CI coverage of 
strategy B over A and D over C, so that using the small 
pilot studies does not lead to any improvements.  While 
the rounding of the pilot        in C offers improvements 
in the measures over A’s, that is not the case in strate-
gies B and D. For the sample designs, results from the 
ppstrat samples seem to be most favorable.  For these 
populations, wtd bal sampling based on          in the main 
sample for Strategy B is suboptimal since the variance 
of neither population is proportional to x.  Nonetheless, 
ppstrat      								is	still	reasonably	efficient.		As	expected	in	
these types of populations, the RMSE’s when sampling 
by srswor are uniformly worse than those for the other 
designs in strategies B and D.

For the         population, which had a total of 
14,304.74, the largest Relbias value was 1.29 percent.  
Again, using the correct working model led to improved 
results, in terms of lower Relbias and RMSE values and 

CI coverage closer to 95 percent; there are slight gains 
in using the GREG estimator with model (3.2).  Here, 
there is a notable (but not drastic) drop in the overall CI 
coverages compared to the                   population, the 
lowest being 91.7 percent.  The most striking difference 
in RMSE values are the gains achieved with the pilot 
strategies over the corresponding nonpilot ones.  For  
example ,  t he  RMSE fo r  t he  combina t i on                          
               A, ppstrat) is 1,186.76, while the RMSE 
for                     B, ppstrat) is 1,289.02.  That is, using 
a pilot leads to an RMSE that is about 92.1 percent of 
that of using no pilot.

Figure 2 on the following page displays the ratios for 
the            population of RMSE’s of the various estima-
tors and sampling plans to the RMSE of the combina-
tion of                     B, ppstrat, with estimated     for n 
= 100.  This combination was selected as the reference 
since (a) ppstrat is a popular plan in practice, and (b) 
the GREG estimator                    is one that is used by 
conservative practitioners because it is approximately 
design-unbiased while still taking advantage of the y-x 
relationship.  The left and right panels show the ratios 
for estimators that use the true     and an estimated    .  
When the true gamma is used in estimation, but a pilot 
study is conducted to determine how to select the main 
sample,	the	most	efficient	method	of	sampling	is	ppstrat.  
In the (ppstrat, pilot) case, all estimators have about the 
same RMSE.

The right-hand panel gives the more realistic com-
parisons among combinations that could be used in 
practice.  Conducting a pilot study with strategy A (no 
rounding) followed by a ppstrat           main sample 
yielded a 4- to 8-percent reduction in RMSE compared 
to the reference combination described above.  Round-
ing in strategy C reduces the gains from doing a pilot.  
Weighted balance on an estimated      has no advantage 
over the reference combination.

If no pilot is conducted (strategies B and D), then 
wtd bal											is	the	most	efficient	scheme,	but	ppstrat          
 is very competitive.  The rounding in strategy 
D leads to virtually the same results as B.  Among the 
estimators, the model-based choice                       and 
the GREG                           are somewhat worse than the 
others, although differences are not extreme. 

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 

12 2 2
1

ˆvar ( ) i i ii s i s i s i si iT a r x x r ,

where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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1

ˆvar ( ) i i ii s i s i s i si iT a r x x r ,

where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
variance estimate for the BLUP’s: 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
variability in population units not in the sample.  

For the GREG’s, we include the following variance 
estimators (e.g., see Valliant 2002, expression 2.4): 
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The same variances were used for all sample designs, 
except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 

4. Simulation Results 

4.1.  Estimates 
We calculated the average ˆ  over each set of 1,000 
samples drawn from both populations.  Results are only 
summarized here.  

When 3 / 4 , strategies B and D had more 
nearly unbiased estimates than A and C due to the 
smaller pilot sample sizes in the latter two.  The 
rounding in strategies C and D made the average ˆ ’s 
further from the true value, since ˆ ’s close to three-
fourths were either rounded down to one-half or up to 
one.  

When 2 , the average ˆ ’s were closer to the 
true values.  There was not much difference between 
the average ˆ ’s for the pilot study strategies A and C 
versus the no-pilot strategies B and D.  The rounding 
also did not make much of a difference. Using the 
correct model (3.1) rather than (3.2) resulted in ˆ ’s 
closer to the true value, as might be expected.

4.2: Total and Variance Estimates 
Our primary focus is how estimating  effects estimates 
of totals and their variances.  Tables 5 and 6 at the end of 
this paper include the root mean square error (RMSE) and 
95% confidence interval (CI) coverage of each of the nine 
total estimators based on samples of size 100 drawn from 
the 3 / 4  and 2  populations, respectively (similar 
generalizations held for the samples of size 500, which 
are omitted due to length).  Both tables are organized such 
that the HT estimates are first, followed by the BLUP and 
GREG totals produced using the true  value (which 
resulted in identical results for strategies B and D), then 
those that used ˆ ’s. Relative biases (Relbias) are not 
shown in the tables but are briefly mentioned below.   

For the 3 / 4  population, where the true total is 
7,174.74, all estimators were approximately unbiased 
over the 1,000 samples since the largest Relbias value was 
-0.41% for ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  using strategy B and wtd bal
( x ) samples.  For all strategies, using the correct 
working model (2.1) versus model (3.2) resulted in lower 
Relbias and RMSE values and CI coverage closer to 95%, 
though differences are not drastic.  With model (3.2), 
using the GREG estimator resulted in improvements in all 
three measures over the equivalent BLUP estimators.  
Comparing strategies, there are slight improvements in 
the Relbias, RMSE, and CI coverage of strategy B over A 
and D over C, so using the small pilot studies does not 
lead to any improvements.  While the rounding of the 
pilot ˆ ’s in C offers improvements in the measures over 
A’s, that is not the case in strategies B and D. For the 
sample designs, results from the ppstrat samples seem to 
be most favorable.  For these populations, wtd bal
sampling based on x  in the main sample for Strategy B 
is suboptimal since the variance of neither population is 
proportional to x.  Nonetheless, ppstrat ( x ) is still 
reasonably efficient.  As expected in these types of 
populations, the RMSE’s when sampling by srswor are 
uniformly worse than those for the other designs in 
strategies B and D. 

For the 2  population, which had a total of 
14,304.74, the largest Relbias value was 1.29%.  Again, 
using the correct working model led to improved results, 
in terms of lower Relbias and RMSE values and CI 
coverage closer to 95%; there are slight gains in using the 
GREG estimator with model (3.2).  Here, there is a 
notable (but not drastic) drop in the overall CI coverages 
compared to the 3 / 4  population, the lowest being 
91.7%.  The most striking difference in RMSE values are 
the gains achieved with the pilot strategies over the 
corresponding non-pilot ones.  For example, the RMSE 
for the combination ( ˆˆ (1,1 : )GRT x , A, ppstrat) is 1,186.76,  

The following is the basic model variance estimate 
for the BLUP estimators: 
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where ia  is the “model weight” involving ix  in the 
working model and ir  is the residual for unit i.

We also include a robust leverage-adjusted 
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where iih  is the leverage for unit i.  The identical 
second term in both model variances accounts for 
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except for the ppstrat design-based variances for the 
HT and GREG estimators, where successive pairs of 
sample units were grouped, variances were calculated 
within each stratum, and strata variances were 
cumulated. Since both working models were specified 
over all strata, the model variance formulae 1var  and 

2var  were used for samples selected using ppstrat
sampling in estimating the variance of the BLUP. 
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while the RMSE for  ( ˆˆ (1,1 : )GRT x , B, ppstrat) is 
1,289.02.  That is, using a pilot leads to an RMSE that 
is about 92.1% of that of using no pilot. 

Figure 2 on the following page displays the ratios 
for the 2  population of RMSE’s of the various 
estimators and sampling plans to the RMSE of the 
combination of ˆˆ (1,1 : )GRT x , B, ppstrat, with estimated 

 for n = 100.  This combination was selected as the 
reference since (a) ppstrat is a popular plan in practice, 
and (b) the GREG estimator ˆˆ (1,1 : )GRT x is one that is 
used by conservative practitioners because it is 
approximately design-unbiased while still taking 
advantage of the y-x relationship.  The left and right 
panels show the ratios for estimators that use the true 
and an estimated .  When the true gamma in used in 
estimation, but a pilot study is conducted to determine 
how to select the main sample, the most efficient 
method of sampling is ppstrat.  In the (ppstrat, pilot) 
case, all estimators have about the same RMSE. 

The right-hand panel gives the more realistic 
comparisons among combinations that could be used in 
practice.  Conducting a pilot study with strategy A (no 
rounding) followed by a ppstrat ( ˆx ) main sample 
yielded a 4 to 8% reduction in RMSE compared to the 
reference combination described above.  Rounding in 
strategy C reduces the gains from doing a pilot.  
Weighted balance on an estimated  has no advantage 
over the reference combination. 

If no pilot is conducted (strategies B and D), then 
wtd bal ( x ) is the most efficient scheme, but ppstrat 
( x ) is very competitive.  The rounding in strategy D 
leads to virtually the same results as B.  Among the 
estimators, the model-based choice ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  and 
the GREG ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are somewhat worse than 
the others, although differences are not extreme.  

In all cases, unrestricted ppswor sampling was the 
poorest performer, regardless of whether  was known 
or estimated. 

5. General Conclusions, Limitations, and Future 
Considerations 

We investigated some alternative strategies for 
sampling and estimation in populations where there is 
one target variable y, whose total is to be estimated, and 
one auxiliary x, which is known for every unit in the 
population.  The variance of y is known to increase as x
increases, but the exact form of the variance is 
unknown to the sampler. Modeling the variance as 
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approximation to reality. We studied three options that 
might be considered for this type of problem: design of a 
pilot sample, design of a main sample, and selection of an 
estimator. 
 We obtained ambiguous results on whether a pilot 
study, designed to get a preliminary estimate of , would 
be worthwhile. For our versions of the HMT population, 
the smaller pilot studies gave more negative ˆ ’s and 
more biased ones on average.  In the less variable 
population we studied, conducting a pilot did not 
consistently give lower root mean square errors for the 
totals than using only a main sample with an educated 
guess about the size of .  Rounding ˆ  to the nearest 
half was not particularly helpful or harmful in estimating 
totals.  Small root mean square error improvements came 
from reducing the variability in the ˆ ’s, in strategies C 
and D, for the less variable population ( 3 / 4 ), but the 
opposite was true in the more variable population 
( 2 ). Thus, when the focus is on estimating , a pilot 
study and rounding are not useful.  But, if the focus is on 
estimating totals, a pilot, possibly with rounding, may 
offer slight MSE improvements, depending on the 
population variability. 

Among the sampling plans we considered, 
stratification based on cumulative ˆx  or x  rules, 
denoted ppstrat here, were both reasonably efficient. The 
use of wtd bal samples based on ˆ ’s was not effective in 
reducing the root mean square errors of totals.   

A good overall strategy for this type of problem 
appears to be the following.  Select a highly restricted 
probability proportional to x .  This can be 
accomplished using the cum ( x ) rule with one or two 
units selected per stratum.  Estimate the total with either a 
BLUP or a GREG estimator based on a reasonable model 
for the population at hand.  Model (3.2), though incorrect, 
still fit the data fairly well in the cases we examined.  This 
general approach is similar to ones used by some 
accounting firms that conduct cost segregation studies. 

Any simulation study is, of course, limited.  
Populations that are less well-behaved than HMT may 
yield different results. Accounting populations, in 
particular, often have units with extreme values that need 
special treatment both when estimating ˆ  and the 
population total. 

Some future considerations could include variations 
on the sample size.  Brewer (2002) suggests 1,000 as the 
minimum for estimating gamma with “any reasonable 
amount of precision.” However, in accounting 
applications, the real interest is on performance in small 
samples.  Pilots of n = 10 and main studies of n = 50, or 
even less, are typical.  In such cases, weighted balanced 
samples and model-based estimators may have 
advantages. 
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Any simulation study is, of course, limited.  Popula-
tions that are less well-behaved than HMT may yield dif-
ferent results. Accounting populations, in particular, often 
have units with extreme values that need special treatment 
both when estimating     and the population total.

Some future considerations could include variations 
on the sample size.  Brewer (2002) suggests 1,000 as 
the minimum for estimating gamma with “any reason-
able amount of precision.” However, in accounting ap-
plications, the real interest is on performance in small 
samples.  Pilots of n = 10 and main studies of n = 50, 
or even less, are typical.  In such cases, weighted bal-
anced samples and model-based estimators may have 
advantages.

	References

Allen III, W. E. and Foster, M. B. (2005), “Cost segre-
gation applied,”  Journal of Accountancy, http://
www.aicpa.org/pubs/jofa/aug2005/allen.htm.

Bryant, E.C.; Hartley, H.O.; and Jessen, R.J. (1960), 
“Design	and	Estimation	in	Two-Way	Stratifica-
tion,” Journal of the American Statistical Associa-
tion, 55, pp. 105-124.

Batcher, M. and Liu, Y. (2002), “Ratio Estimation of 
Small	Samples	Using	Deep	Stratification,”	ASA	
Proceedings of the Business and Economic Statis-
tics Section, pp. 65-70.

Brewer, K. (2002), Combined Survey Sampling 
Inference: Weighing Basu’s Elephants, Arnold, a 
member of the Hodder Headline group.

while the RMSE for  ( ˆˆ (1,1 : )GRT x , B, ppstrat) is 
1,289.02.  That is, using a pilot leads to an RMSE that 
is about 92.1% of that of using no pilot. 

Figure 2 on the following page displays the ratios 
for the 2  population of RMSE’s of the various 
estimators and sampling plans to the RMSE of the 
combination of ˆˆ (1,1 : )GRT x , B, ppstrat, with estimated 

 for n = 100.  This combination was selected as the 
reference since (a) ppstrat is a popular plan in practice, 
and (b) the GREG estimator ˆˆ (1,1 : )GRT x is one that is 
used by conservative practitioners because it is 
approximately design-unbiased while still taking 
advantage of the y-x relationship.  The left and right 
panels show the ratios for estimators that use the true 
and an estimated .  When the true gamma in used in 
estimation, but a pilot study is conducted to determine 
how to select the main sample, the most efficient 
method of sampling is ppstrat.  In the (ppstrat, pilot) 
case, all estimators have about the same RMSE. 

The right-hand panel gives the more realistic 
comparisons among combinations that could be used in 
practice.  Conducting a pilot study with strategy A (no 
rounding) followed by a ppstrat ( ˆx ) main sample 
yielded a 4 to 8% reduction in RMSE compared to the 
reference combination described above.  Rounding in 
strategy C reduces the gains from doing a pilot.  
Weighted balance on an estimated  has no advantage 
over the reference combination. 

If no pilot is conducted (strategies B and D), then 
wtd bal ( x ) is the most efficient scheme, but ppstrat 
( x ) is very competitive.  The rounding in strategy D 
leads to virtually the same results as B.  Among the 
estimators, the model-based choice ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  and 
the GREG ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are somewhat worse than 
the others, although differences are not extreme.  

In all cases, unrestricted ppswor sampling was the 
poorest performer, regardless of whether  was known 
or estimated. 

5. General Conclusions, Limitations, and Future 
Considerations 

We investigated some alternative strategies for 
sampling and estimation in populations where there is 
one target variable y, whose total is to be estimated, and 
one auxiliary x, which is known for every unit in the 
population.  The variance of y is known to increase as x
increases, but the exact form of the variance is 
unknown to the sampler. Modeling the variance as 

iiiM xxyVar 2)|(  is assumed to be a good  

approximation to reality. We studied three options that 
might be considered for this type of problem: design of a 
pilot sample, design of a main sample, and selection of an 
estimator. 
 We obtained ambiguous results on whether a pilot 
study, designed to get a preliminary estimate of , would 
be worthwhile. For our versions of the HMT population, 
the smaller pilot studies gave more negative ˆ ’s and 
more biased ones on average.  In the less variable 
population we studied, conducting a pilot did not 
consistently give lower root mean square errors for the 
totals than using only a main sample with an educated 
guess about the size of .  Rounding ˆ  to the nearest 
half was not particularly helpful or harmful in estimating 
totals.  Small root mean square error improvements came 
from reducing the variability in the ˆ ’s, in strategies C 
and D, for the less variable population ( 3 / 4 ), but the 
opposite was true in the more variable population 
( 2 ). Thus, when the focus is on estimating , a pilot 
study and rounding are not useful.  But, if the focus is on 
estimating totals, a pilot, possibly with rounding, may 
offer slight MSE improvements, depending on the 
population variability. 

Among the sampling plans we considered, 
stratification based on cumulative ˆx  or x  rules, 
denoted ppstrat here, were both reasonably efficient. The 
use of wtd bal samples based on ˆ ’s was not effective in 
reducing the root mean square errors of totals.   

A good overall strategy for this type of problem 
appears to be the following.  Select a highly restricted 
probability proportional to x .  This can be 
accomplished using the cum ( x ) rule with one or two 
units selected per stratum.  Estimate the total with either a 
BLUP or a GREG estimator based on a reasonable model 
for the population at hand.  Model (3.2), though incorrect, 
still fit the data fairly well in the cases we examined.  This 
general approach is similar to ones used by some 
accounting firms that conduct cost segregation studies. 

Any simulation study is, of course, limited.  
Populations that are less well-behaved than HMT may 
yield different results. Accounting populations, in 
particular, often have units with extreme values that need 
special treatment both when estimating ˆ  and the 
population total. 

Some future considerations could include variations 
on the sample size.  Brewer (2002) suggests 1,000 as the 
minimum for estimating gamma with “any reasonable 
amount of precision.” However, in accounting 
applications, the real interest is on performance in small 
samples.  Pilots of n = 10 and main studies of n = 50, or 
even less, are typical.  In such cases, weighted balanced 
samples and model-based estimators may have 
advantages. 

while the RMSE for  ( ˆˆ (1,1 : )GRT x , B, ppstrat) is 
1,289.02.  That is, using a pilot leads to an RMSE that 
is about 92.1% of that of using no pilot. 

Figure 2 on the following page displays the ratios 
for the 2  population of RMSE’s of the various 
estimators and sampling plans to the RMSE of the 
combination of ˆˆ (1,1 : )GRT x , B, ppstrat, with estimated 

 for n = 100.  This combination was selected as the 
reference since (a) ppstrat is a popular plan in practice, 
and (b) the GREG estimator ˆˆ (1,1 : )GRT x is one that is 
used by conservative practitioners because it is 
approximately design-unbiased while still taking 
advantage of the y-x relationship.  The left and right 
panels show the ratios for estimators that use the true 
and an estimated .  When the true gamma in used in 
estimation, but a pilot study is conducted to determine 
how to select the main sample, the most efficient 
method of sampling is ppstrat.  In the (ppstrat, pilot) 
case, all estimators have about the same RMSE. 

The right-hand panel gives the more realistic 
comparisons among combinations that could be used in 
practice.  Conducting a pilot study with strategy A (no 
rounding) followed by a ppstrat ( ˆx ) main sample 
yielded a 4 to 8% reduction in RMSE compared to the 
reference combination described above.  Rounding in 
strategy C reduces the gains from doing a pilot.  
Weighted balance on an estimated  has no advantage 
over the reference combination. 

If no pilot is conducted (strategies B and D), then 
wtd bal ( x ) is the most efficient scheme, but ppstrat 
( x ) is very competitive.  The rounding in strategy D 
leads to virtually the same results as B.  Among the 
estimators, the model-based choice ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  and 
the GREG ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are somewhat worse than 
the others, although differences are not extreme.  

In all cases, unrestricted ppswor sampling was the 
poorest performer, regardless of whether  was known 
or estimated. 

5. General Conclusions, Limitations, and Future 
Considerations 

We investigated some alternative strategies for 
sampling and estimation in populations where there is 
one target variable y, whose total is to be estimated, and 
one auxiliary x, which is known for every unit in the 
population.  The variance of y is known to increase as x
increases, but the exact form of the variance is 
unknown to the sampler. Modeling the variance as 

iiiM xxyVar 2)|(  is assumed to be a good  

approximation to reality. We studied three options that 
might be considered for this type of problem: design of a 
pilot sample, design of a main sample, and selection of an 
estimator. 
 We obtained ambiguous results on whether a pilot 
study, designed to get a preliminary estimate of , would 
be worthwhile. For our versions of the HMT population, 
the smaller pilot studies gave more negative ˆ ’s and 
more biased ones on average.  In the less variable 
population we studied, conducting a pilot did not 
consistently give lower root mean square errors for the 
totals than using only a main sample with an educated 
guess about the size of .  Rounding ˆ  to the nearest 
half was not particularly helpful or harmful in estimating 
totals.  Small root mean square error improvements came 
from reducing the variability in the ˆ ’s, in strategies C 
and D, for the less variable population ( 3 / 4 ), but the 
opposite was true in the more variable population 
( 2 ). Thus, when the focus is on estimating , a pilot 
study and rounding are not useful.  But, if the focus is on 
estimating totals, a pilot, possibly with rounding, may 
offer slight MSE improvements, depending on the 
population variability. 

Among the sampling plans we considered, 
stratification based on cumulative ˆx  or x  rules, 
denoted ppstrat here, were both reasonably efficient. The 
use of wtd bal samples based on ˆ ’s was not effective in 
reducing the root mean square errors of totals.   

A good overall strategy for this type of problem 
appears to be the following.  Select a highly restricted 
probability proportional to x .  This can be 
accomplished using the cum ( x ) rule with one or two 
units selected per stratum.  Estimate the total with either a 
BLUP or a GREG estimator based on a reasonable model 
for the population at hand.  Model (3.2), though incorrect, 
still fit the data fairly well in the cases we examined.  This 
general approach is similar to ones used by some 
accounting firms that conduct cost segregation studies. 

Any simulation study is, of course, limited.  
Populations that are less well-behaved than HMT may 
yield different results. Accounting populations, in 
particular, often have units with extreme values that need 
special treatment both when estimating ˆ  and the 
population total. 

Some future considerations could include variations 
on the sample size.  Brewer (2002) suggests 1,000 as the 
minimum for estimating gamma with “any reasonable 
amount of precision.” However, in accounting 
applications, the real interest is on performance in small 
samples.  Pilots of n = 10 and main studies of n = 50, or 
even less, are typical.  In such cases, weighted balanced 
samples and model-based estimators may have 
advantages. 

while the RMSE for  ( ˆˆ (1,1 : )GRT x , B, ppstrat) is 
1,289.02.  That is, using a pilot leads to an RMSE that 
is about 92.1% of that of using no pilot. 

Figure 2 on the following page displays the ratios 
for the 2  population of RMSE’s of the various 
estimators and sampling plans to the RMSE of the 
combination of ˆˆ (1,1 : )GRT x , B, ppstrat, with estimated 

 for n = 100.  This combination was selected as the 
reference since (a) ppstrat is a popular plan in practice, 
and (b) the GREG estimator ˆˆ (1,1 : )GRT x is one that is 
used by conservative practitioners because it is 
approximately design-unbiased while still taking 
advantage of the y-x relationship.  The left and right 
panels show the ratios for estimators that use the true 
and an estimated .  When the true gamma in used in 
estimation, but a pilot study is conducted to determine 
how to select the main sample, the most efficient 
method of sampling is ppstrat.  In the (ppstrat, pilot) 
case, all estimators have about the same RMSE. 

The right-hand panel gives the more realistic 
comparisons among combinations that could be used in 
practice.  Conducting a pilot study with strategy A (no 
rounding) followed by a ppstrat ( ˆx ) main sample 
yielded a 4 to 8% reduction in RMSE compared to the 
reference combination described above.  Rounding in 
strategy C reduces the gains from doing a pilot.  
Weighted balance on an estimated  has no advantage 
over the reference combination. 

If no pilot is conducted (strategies B and D), then 
wtd bal ( x ) is the most efficient scheme, but ppstrat 
( x ) is very competitive.  The rounding in strategy D 
leads to virtually the same results as B.  Among the 
estimators, the model-based choice ˆ ˆ ˆ/ 2ˆ ( , : )T x x x  and 
the GREG ˆ ˆ ˆ/ 2ˆ ( , : )GRT x x x  are somewhat worse than 
the others, although differences are not extreme.  

In all cases, unrestricted ppswor sampling was the 
poorest performer, regardless of whether  was known 
or estimated. 

5. General Conclusions, Limitations, and Future 
Considerations 

We investigated some alternative strategies for 
sampling and estimation in populations where there is 
one target variable y, whose total is to be estimated, and 
one auxiliary x, which is known for every unit in the 
population.  The variance of y is known to increase as x
increases, but the exact form of the variance is 
unknown to the sampler. Modeling the variance as 

iiiM xxyVar 2)|(  is assumed to be a good  

approximation to reality. We studied three options that 
might be considered for this type of problem: design of a 
pilot sample, design of a main sample, and selection of an 
estimator. 
 We obtained ambiguous results on whether a pilot 
study, designed to get a preliminary estimate of , would 
be worthwhile. For our versions of the HMT population, 
the smaller pilot studies gave more negative ˆ ’s and 
more biased ones on average.  In the less variable 
population we studied, conducting a pilot did not 
consistently give lower root mean square errors for the 
totals than using only a main sample with an educated 
guess about the size of .  Rounding ˆ  to the nearest 
half was not particularly helpful or harmful in estimating 
totals.  Small root mean square error improvements came 
from reducing the variability in the ˆ ’s, in strategies C 
and D, for the less variable population ( 3 / 4 ), but the 
opposite was true in the more variable population 
( 2 ). Thus, when the focus is on estimating , a pilot 
study and rounding are not useful.  But, if the focus is on 
estimating totals, a pilot, possibly with rounding, may 
offer slight MSE improvements, depending on the 
population variability. 

Among the sampling plans we considered, 
stratification based on cumulative ˆx  or x  rules, 
denoted ppstrat here, were both reasonably efficient. The 
use of wtd bal samples based on ˆ ’s was not effective in 
reducing the root mean square errors of totals.   

A good overall strategy for this type of problem 
appears to be the following.  Select a highly restricted 
probability proportional to x .  This can be 
accomplished using the cum ( x ) rule with one or two 
units selected per stratum.  Estimate the total with either a 
BLUP or a GREG estimator based on a reasonable model 
for the population at hand.  Model (3.2), though incorrect, 
still fit the data fairly well in the cases we examined.  This 
general approach is similar to ones used by some 
accounting firms that conduct cost segregation studies. 

Any simulation study is, of course, limited.  
Populations that are less well-behaved than HMT may 
yield different results. Accounting populations, in 
particular, often have units with extreme values that need 
special treatment both when estimating ˆ  and the 
population total. 

Some future considerations could include variations 
on the sample size.  Brewer (2002) suggests 1,000 as the 
minimum for estimating gamma with “any reasonable 
amount of precision.” However, in accounting 
applications, the real interest is on performance in small 
samples.  Pilots of n = 10 and main studies of n = 50, or 
even less, are typical.  In such cases, weighted balanced 
samples and model-based estimators may have 
advantages. 

Cochran, W. (1977), Sampling Techniques, 3rd edi-
tion, John Wiley & Sons, pp. 124-126.

Godfrey, J.; Roshwalb, A.; and Wright, R. (1984), 
“Model-based	stratification	in	inventory	cost	esti-
mation,” Journal of Business & Economic Statis-
tics, 2, pp. 1-9.

Foreman, E. K. (1991), Survey Sampling Principles, 
Marcel Dekker, Inc., New York.

Hansen, M.H.; Madow, W.G.; and Tepping, B.J. 
(1983), An evaluation of model-dependent and 
probability-sampling inferences in sample sur-
veys, Journal of the American Statistical Associa-
tion, 78, pp. 776-793.

Hartley, H.O. and Rao, J. N. K. (1962), “Sampling 
with Unequal Probabilities and without Replace-
ment,” Annals of Mathematical Statistics, 33,  
pp. 350-374.

Roshwalb, A. (1987), “The estimation of a heterosce-
dastic linear model using inventory data,” ASA 
Proceedings of the Business and Economic Statis-
tics Section, pp. 321-326.

Särndal, Swensson, and Wretman (1992), Model As-
sisted Survey Sampling, Springer-Verlag, New 
York.

Sitter, R. R. and C. J. Skinner (1994), “Multi-Way 
Stratification	by	Linear	Programming,”	Survey 
Methodology, 20, pp. 65-73.

Strobel, C. (2002), “New rapid write-off provisions 
for tangible and intangible assets,” Journal of 
Corporate Accounting and Finance, 13,  
pp. 99-101.

Valliant, R; Dorfman, A.H.; and Royall, R.M, (2000), 
Finite Population Sampling and Inference: A Pre-
dictive Approach, John Wiley & Sons, New York.

Valliant, R. (2002), “Variance estimation for the gen-
eral regression estimator,” Survey Methodology, 
28, pp. 103-114.

Wolter, K. (1985), Introduction to Variance Estima-
tion, Springer-Verlag, New York.



- 88 -

Henry and valliant
T

ab
le

 3
—

R
oo

t M
ea

n 
Sq

ua
re

 E
rr

or
 a

nd
 9

5-
Pe

rc
en

t C
on

fid
en

ce
 In

te
rv

al
 C

ov
er

ag
e 

us
in

g 
D

es
ig

n-
B

as
ed

 (D
), 

B
as

ic
 M

od
el

 (B
), 

an
d 

L
ev

er
ag

e-
A

dj
us

te
d 

M
od

el
 (L

) 
V

ar
ia

nc
es

, 
3/

4
, n

=1
00

 fo
r 

A
ll 

St
ra

te
gi

es
 

St
ra

te
gy

 
A

 
 

 
 

B
 

 
 

C
 

 
 

 
D

 
D

es
ig

n 
pp

sw
or

 
pp

st
ra

t 
w

td
 b

al
 

sr
sw

or
 

pp
sw

or
 

pp
st

ra
t 

w
td

 b
al

 
pp

sw
or

 
pp

st
ra

t 
w

td
 b

al
 

sr
sw

or
 

pp
sw

or
 

pp
st

ra
t 

w
td

 b
al

 
T̂    

   
 R

M
SE

 
25

9.
02

 
13

8.
93

 
13

4.
86

 
47

1.
34

 
20

7.
98

 
13

9.
56

 
13

8.
40

 
25

9.
02

 
13

8.
93

 
13

8.
44

 
47

1.
34

 
20

7.
98

 
13

9.
56

 
13

8.
40

 
   

   
95

%
 C

I -
 D

 
94

.9
 

94
.4

 
10

0.
0 

94
.0

 
95

.4
 

94
.5

 
99

.8
 

95
.1

 
94

.4
 

10
0.

0 
94

.0
 

95
.4

 
94

.5
 

99
.8

 
)

:1,1(ˆ
x

T    
   

R
M

SE
 

14
0.

33
 

13
8.

29
 

13
3.

28
 

14
8.

36
 

13
8.

29
 

13
8.

77
 

13
6.

98
 

14
0.

33
 

13
8.

29
 

13
6.

27
 

14
8.

36
 

13
8.

29
 

13
8.

77
 

13
6.

98
 

   
  9

5%
 C

I –
 B

 
94

.1
 

94
.4

 
94

.8
 

94
.1

 
94

.8
 

94
.4

 
94

.6
 

94
.1

 
94

.4
 

94
.6

 
94

.1
 

94
.8

 
94

.4
 

94
.6

 
   

  9
5%

 C
I –

 L
 

94
.4

 
94

.7
 

94
.9

 
94

.4
 

95
.2

 
94

.6
 

95
.0

 
94

.4
 

94
.7

 
95

.0
 

94
.4

 
95

.2
 

94
.6

 
95

.0
 

)
:1,1(

ˆ
x

T G
R

   
   

R
M

SE
 

14
0.

13
 

13
8.

28
 

13
4.

21
 

14
9.

10
 

13
8.

55
 

13
9.

52
 

13
7.

50
 

14
0.

13
 

13
8.

28
 

13
6.

92
 

14
9.

10
 

13
8.

55
 

13
9.

52
 

13
7.

50
 

   
  9

5%
 C

I –
 D

 
94

.1
 

94
.3

 
94

.8
 

94
.4

 
94

.5
 

94
.3

 
94

.7
 

94
.1

 
94

.3
 

94
.5

 
94

.4
 

94
.5

 
94

.3
 

94
.7

 
   

  9
5%

 C
I –

 L
 

94
.4

 
94

.5
 

95
.1

 
94

.6
 

94
.8

 
95

.1
 

95
.1

 
94

.4
 

94
.5

 
95

.1
 

94
.6

 
94

.8
 

95
.1

 
95

.1
 

)
:

,
(ˆ

2/
x

x
x

T    
   

R
M

SE
 

14
6.

93
 

13
8.

18
 

13
5.

24
 

15
5.

89
 

14
4.

42
 

13
9.

94
 

13
9.

78
 

14
6.

93
 

13
8.

18
 

13
9.

14
 

15
5.

89
 

14
4.

42
 

13
9.

94
 

13
9.

78
 

   
  9

5%
 C

I –
 B

 
94

.1
 

95
.3

 
95

.4
 

94
.0

 
94

.8
 

95
.1

 
95

.2
 

94
.1

 
95

.3
 

95
.5

 
94

.0
 

94
.8

 
95

.1
 

95
.2

 
   

  9
5%

 C
I –

 L
 

94
.4

 
95

.7
 

95
.6

 
94

.3
 

94
.9

 
95

.1
 

96
.0

 
94

.4
 

95
.7

 
95

.6
 

94
.3

 
94

.9
 

95
.1

 
96

.0
 

)
:

,
(

ˆ
2/

x
x

x
T G

R    
   

R
M

SE
 

14
7.

85
 

13
8.

22
 

13
5.

15
 

15
5.

59
 

14
4.

24
 

13
9.

49
 

13
9.

05
 

14
7.

85
 

13
8.

22
 

13
9.

02
 

15
5.

59
 

14
4.

24
 

13
9.

49
 

13
9.

05
 

   
  9

5%
 C

I –
 D

 
94

.3
 

94
.3

 
95

.4
 

94
.0

 
94

.8
 

94
.4

 
95

.2
 

94
.3

 
94

.3
 

95
.5

 
94

.0
 

94
.8

 
94

.4
 

92
.5

 
   

  9
5%

 C
I –

 L
 

94
.4

 
94

.6
 

95
.6

 
94

.3
 

95
.5

 
94

.9
 

95
.3

 
94

.4
 

94
.6

 
95

.6
 

94
.3

 
95

.5
 

94
.9

 
95

.3
 

)
:1,1(ˆ

ˆ x
T    

   
R

M
SE

 
13

7.
87

 
14

2.
82

 
13

7.
67

 
14

9.
61

 
13

8.
72

 
13

9.
39

 
13

7.
70

 
13

7.
85

 
13

9.
73

 
14

1.
16

 
14

9.
92

 
13

8.
80

 
13

9.
12

 
13

7.
23

 
   

  9
5%

 C
I –

 B
 

94
.3

 
94

.2
 

94
.1

 
93

.8
 

95
.0

 
94

.5
 

94
.8

 
95

.3
 

94
.6

 
94

.9
 

93
.8

 
94

.8
 

94
.6

 
94

.5
 

   
  9

5%
 C

I –
 L

 
94

.5
 

94
.8

 
94

.7
 

94
.3

 
95

.0
 

95
.1

 
94

.9
 

95
.6

 
94

.8
 

95
.2

 
93

.9
 

95
.0

 
95

.0
 

94
.8

 
)

:1,1(
ˆ

ˆ x
T G

R

   
   

R
M

SE
 

13
8.

15
 

14
3.

07
 

13
7.

98
 

14
9.

22
 

13
8.

54
 

13
9.

54
 

13
7.

47
 

13
7.

19
 

13
9.

78
 

14
1.

25
 

14
9.

26
 

13
8.

51
 

13
9.

52
 

13
7.

48
 

   
  9

5%
 C

I –
 D

 
94

.5
 

94
.5

 
94

.9
 

94
.4

 
94

.5
 

94
.4

 
94

.8
 

95
.4

 
94

.9
 

94
.9

 
94

.5
 

94
.5

 
94

.4
 

94
.9

 
   

  9
5%

 C
I –

 L
 

94
.7

 
94

.7
 

95
.1

 
94

.7
 

94
.8

 
95

.0
 

95
.0

 
95

.6
 

95
.0

 
95

.2
 

94
.6

 
94

.8
 

95
.0

 
95

.0
 

)
:

,
(ˆ

ˆ
ˆ

2/ˆ
x

x
x

T    
   

R
M

SE
15

6.
26

 
14

5.
03

 
15

0.
80

 
16

8.
46

 
16

5.
68

 
15

3.
98

 
15

3.
12

 
14

8.
19

 
14

4.
89

 
14

3.
34

 
15

9.
06

 
14

7.
89

 
14

1.
51

 
14

2.
63

 
   

  9
5%

 C
I –

 B
 

94
.9

 
95

.9
 

95
.3

 
94

.0
 

93
.7

 
95

.3
 

95
.0

 
94

.6
 

95
.7

 
95

.0
 

94
.2

 
94

.3
 

95
.2

 
95

.0
 

   
  9

5%
 C

I –
 L

 
94

.9
 

96
.0

 
95

.4
 

94
.4

 
94

.0
 

95
.4

 
95

.2
 

94
.7

 
95

.9
 

95
.5

 
94

.5
 

94
.5

 
95

.6
 

95
.2

 
)

:
,

(
ˆ

ˆ
ˆ

2/ˆ
x

x
x

T G
R    
   

R
M

SE
 

15
8.

14
 

14
3.

42
 

15
0.

75
 

16
8.

24
 

15
4.

78
 

14
1.

81
 

14
4.

09
 

15
3.

69
 

14
1.

72
 

14
3.

14
 

15
8.

61
 

14
5.

58
 

13
9.

32
 

14
0.

97
 

   
  9

5%
 C

I –
 D

  
94

.5
 

94
.5

 
95

.3
 

93
.9

 
95

.0
 

94
.4

 
95

.7
 

94
.0

 
94

.7
 

95
.0

 
94

.0
 

94
.6

 
94

.4
 

95
.5

 
   

  9
5%

 C
I –

 L
  

94
.7

 
94

.8
 

95
.4

 
94

.3
 

95
.3

 
95

.0
 

95
.8

 
94

.4
 

95
.2

 
95

.6
 

94
.6

 
94

.8
 

94
.9

 
95

.7
 



- 89 -

comParing StrategieS to eStimate a meaSure of HeteroScedaSticity
T

ab
le

 4
—

R
oo

t M
ea

n 
Sq

ua
re

 E
rr

or
 a

nd
 9

5-
Pe

rc
en

t C
on

fid
en

ce
 In

te
rv

al
 C

ov
er

ag
e 

us
in

g 
D

es
ig

n-
B

as
ed

 (D
), 

B
as

ic
 M

od
el

 (B
), 

an
d 

L
ev

er
ag

e-
A

dj
us

te
d 

M
od

el
 (L

) 
V

ar
ia

nc
es

, 
2

, n
=1

00
 fo

r 
A

ll 
St

ra
te

gi
es

 
St

ra
te

gy
 

A
 

 
 

 
B

 
 

 
C

 
 

 
 

D
 

D
es

ig
n 

pp
sw

or
 

pp
st

ra
t 

w
td

 b
al

 
sr

sw
or

 
pp

sw
or

 
pp

st
ra

t 
w

td
 b

al
 

pp
sw

or
 

pp
st

ra
t 

w
td

 b
al

 
sr

sw
or

 
pp

sw
or

 
pp

st
ra

t 
w

td
 b

al
 

T̂

 R
M

SE
 

12
80

.3
9 

12
05

.9
6 

12
47

.2
8 

16
93

.6
3 

13
31

.4
9 

12
91

.0
2 

12
68

.6
6 

12
80

.3
9 

12
05

.9
6 

12
79

.5
8 

16
93

.1
8 

13
31

.4
9 

12
91

.0
2 

12
68

.6
6 

   
95

%
 C

I -
 D

 
92

.6
 

94
.4

 
94

.2
 

91
.7

 
94

.2
 

93
.2

 
94

.0
 

92
.6

 
94

.4
 

93
.6

 
91

.7
 

94
.2

 
93

.2
 

94
.7

 
)

:1,1(ˆ
x

T  R
M

SE
 

12
78

.3
8 

12
06

.6
3 

12
43

.6
4 

13
34

.4
9 

13
02

.8
7 

12
53

.6
1 

12
36

.7
5 

12
78

.3
8 

12
06

.6
3 

12
77

.7
1 

13
35

.5
5 

13
02

.8
7 

12
53

.6
1 

12
36

.7
5 

   
95

%
 C

I –
 B

 
93

.1
 

94
.0

 
93

.6
 

92
.9

 
94

.3
 

93
.9

 
94

.6
 

93
.1

 
94

.0
 

92
.5

 
92

.9
 

94
.3

 
93

.9
 

95
.3

 
   

95
%

 C
I –

 L
 

93
.5

 
94

.1
 

94
.0

 
93

.2
 

94
.3

 
94

.0
 

94
.7

 
93

.5
 

94
.1

 
93

.2
 

93
.2

 
94

.3
 

94
.0

 
95

.4
 

)
:1,1(

ˆ
x

T G
R R

M
SE

 
12

82
.8

7 
12

06
.5

2 
12

43
.0

9 
14

82
.9

0 
13

12
.2

5 
12

89
.1

1 
12

68
.0

4 
12

82
.8

7 
12

06
.5

2 
12

77
.1

8 
14

84
.8

4 
13

12
.2

5 
12

89
.1

1 
12

68
.0

4 
   

95
%

 C
I –

 D
 

93
.2

 
94

.0
 

93
.7

 
92

.3
 

93
.5

 
93

.2
 

93
.6

 
93

.2
 

94
.0

 
93

.7
 

92
.3

 
93

.5
 

93
.2

 
94

.6
 

   
95

%
 C

I –
 L

 
93

.5
 

94
.2

 
93

.9
 

92
.6

 
93

.7
 

93
.3

 
93

.8
 

93
.5

 
94

.2
 

93
.9

 
92

.6
 

93
.7

 
93

.3
 

94
.6

 
)

:
,

(ˆ
2/

x
x

x
T

 R
M

SE
 

12
76

.0
1 

12
05

.8
1 

12
47

.7
1 

15
94

.7
5 

13
45

.6
7 

13
11

.3
1 

12
87

.5
9 

12
76

.0
1 

12
05

.8
1 

12
79

.8
0 

15
95

.2
1 

13
45

.6
7 

13
11

.3
1 

12
87

.5
9 

   
95

%
 C

I –
 B

 
92

.4
 

94
.4

 
93

.7
 

92
.8

 
94

.2
 

93
.2

 
94

.4
 

92
.4

 
94

.4
 

93
.7

 
92

.8
 

94
.2

 
93

.2
 

94
.2

 
   

95
%

 C
I –

 L
 

92
.8

 
94

.5
 

93
.9

 
93

.3
 

94
.6

 
94

.2
 

94
.6

 
92

.8
 

94
.5

 
93

.9
 

93
.3

 
94

.6
 

94
.2

 
94

.2
 

)
:

,
(

ˆ
2/

x
x

x
T G

R R
M

SE
 

12
84

.8
5 

12
04

.9
1 

12
48

.2
3 

15
44

.9
0 

13
70

.7
9 

12
95

.4
3 

12
68

.3
9 

12
84

.8
5 

12
04

.9
1 

12
79

.7
6 

15
45

.4
3 

13
70

.7
9 

12
95

.4
3 

12
68

.3
9 

   
95

%
 C

I –
 D

 
92

.6
 

94
.3

 
93

.7
 

93
.1

 
94

.1
 

93
.0

 
93

.5
 

92
.6

 
94

.3
 

92
.7

 
93

.1
 

94
.1

 
93

.0
 

94
.7

 
   

95
%

 C
I –

 L
 

93
.0

 
94

.6
 

93
.9

 
93

.7
 

94
.1

 
93

.3
 

93
.8

 
93

.0
 

94
.6

 
93

.2
 

93
.7

 
94

.1
 

93
.3

 
94

.8
 

)
:1,1(ˆ

ˆ x
T

R
M

SE
 

12
97

.0
4 

11
98

.1
2 

12
81

.4
7 

13
58

.5
4 

13
24

.6
9 

12
76

.8
1 

12
37

.2
3 

12
67

.8
0 

12
46

.2
0 

12
52

.8
1 

13
64

.3
9 

13
27

.1
0 

12
80

.0
5 

12
36

.1
2 

   
95

%
 C

I –
 B

 
93

.4
 

96
.1

 
92

.2
 

91
.8

 
93

.3
 

93
.2

 
94

.1
 

93
.4

 
94

.8
 

93
.6

 
91

.8
 

93
.2

 
93

.2
 

95
.2

 
   

95
%

 C
I –

 L
 

93
.3

 
96

.3
 

92
.4

 
91

.8
 

93
.5

 
93

.2
 

94
.2

 
93

.7
 

95
.1

 
93

.8
 

92
.0

 
93

.5
 

93
.3

 
95

.3
 

)
:1,1(

ˆ
ˆ x

T G
R

   
R

M
SE

 
12

98
.1

7 
11

86
.7

6 
12

75
.5

4 
14

82
.3

3 
13

11
.7

9 
12

89
.0

2 
12

68
.0

2 
12

72
.0

1 
12

30
.4

7 
12

39
.7

9 
14

83
.9

5 
13

11
.5

9 
12

89
.0

2 
12

67
.9

9 
   

95
%

 C
I –

 D
 

93
.3

 
95

.7
 

92
.0

 
92

.3
 

93
.7

 
93

.3
 

93
.6

 
93

.4
 

94
.8

 
93

.6
 

92
.2

 
93

.6
 

93
.3

 
94

.6
 

   
95

%
 C

I –
 L

 
93

.4
 

96
.1

 
92

.3
 

92
.5

 
93

.8
 

93
.3

 
93

.7
 

93
.6

 
95

.3
 

93
.8

 
92

.5
 

93
.6

 
93

.3
 

94
.6

 
)

:
,

(ˆ
ˆ

ˆ
2/ˆ

x
x

x
T

R
M

SE
12

63
.5

7 
12

39
.3

7 
12

71
.8

8 
15

36
.3

4 
13

59
.1

3 
13

27
.3

8 
13

14
.2

3 
12

93
.6

9 
12

42
.8

2 
12

50
.3

1 
15

41
.9

2 
13

66
.0

2 
13

32
.8

7 
13

15
.4

3 
   

95
%

 C
I –

 B
 

93
.9

 
93

.3
 

93
.0

 
91

.7
 

93
.7

 
93

.0
 

93
.3

 
94

.1
 

93
.8

 
93

.4
 

91
.6

 
93

.6
 

93
.4

 
94

.2
 

   
95

%
 C

I –
 L

 
94

.4
 

93
.8

 
93

.5
 

92
.0

 
93

.9
 

93
.5

 
93

.9
 

94
.4

 
93

.9
 

93
.4

 
91

.9
 

94
.1

 
93

.8
 

94
.5

 
)

:
,

(
ˆ

ˆ
ˆ

2/ˆ
x

x
x

T G
R R

M
SE

 
14

21
.6

2 
12

39
.2

0 
12

74
.7

1 
15

31
.5

3 
13

47
.6

7 
12

95
.4

3 
12

76
.4

7 
12

75
.4

1 
12

43
.2

6 
12

49
.6

9 
15

36
.6

2 
13

50
.5

9 
12

98
.0

9 
12

79
.5

9 
   

95
%

 C
I –

 D
  

93
.7

 
93

.4
 

93
.5

 
91

.8
 

93
.5

 
93

.0
 

93
.1

 
94

.1
 

93
.9

 
93

.5
 

91
.7

 
93

.8
 

93
.0

 
94

.5
 

   
95

%
 C

I –
 L

  
93

.8
 

93
.6

 
93

.7
 

92
.3

 
94

.0
 

93
.4

 
93

.6
 

94
.2

 
94

.0
 

93
.5

 
92

.2
 

93
.8

 
93

.3
 

94
.8

 





5

Tax Benefits and 
Administrative Burdens, 

Recent Research from the IRS

Gangi  Henry  Raub

Scoffic

Chu  Kovalick





- 93 -

gangi, Henry, and raubFactors in Estates’ Utilization of Special Tax 
Provisions For Family-Owned Farms and Closely 

Held Businesses
Martha Eller Gangi, Kimberly Henry, and Brian G. Raub, Internal Revenue Service

W ith the enactment of several legislative 
provisions, the U.S. Congress has sought 
to protect family-owned farms and closely 

held businesses by lessening the burden of the Federal 
estate tax, a progressive tax on the transfer of wealth 
at death.  These provisions have included: special use 
valuation—the valuation of property at its actual use 
in a family enterprise rather than its full market value; 
the	 qualified	 family-owned	 business	 deduction;	 and	
the deferral of Federal estate tax liabilities [1].  Special 
use	valuation	and	the	qualified	family-owned	business	
deduction each reduce the taxable estate, the amount to 
which graduated estate tax rates are applied, and, ulti-
mately, an estate’s tax liability.  The deferral provision 
allows an estate to defer the portion of estate tax that is 
attributable to the decedent’s closely held business and 
pay the balance in installments.  

In this paper, we present a brief description of 
Federal estate tax law in effect for the estates of 2001 
decedents, as well as an examination of the three busi-
ness provisions available to these estates.  In addition, 
we presents logistic regression models that examine the 
relationship between usage of one business provision and 
other estate characteristics.  We also discuss the potential 
for future research.  This paper is an extension of our 
earlier research that examined the subpopulations of 
estates that utilize each of the three business provisions 
and compared them to the subpopulations of estates that 
do not utilize the provisions [2].  This earlier research 

also includes a detailed examination of asset composition 
of estates in each of the subpopulations, as well as an 
examination	of	estates’	liquidity,	the	financial	capacity	
of estates to meet Federal estate tax responsibilities and 
other debts, including mortgages and liens, with only 
accumulated liquid assets.       

For decedents who died in 2001, about 1,800 estates, 
or 1.7 percent of the estate tax decedent population, 
elected to use at least one of the three special business 
provisions.  A total of 831 estates elected special use 
valuation, alone or in combination with the business de-
duction or deferral of estate taxes; 1,114 estates claimed 
the	qualified	 family-owned	business	deduction,	 alone	
or in combination with special use or deferral of taxes; 
and 382 estates elected to defer estate taxes, alone or in 
combination with the other two business provisions.  

Figure A shows the elections and combinations of 
elections employed by estates of 2001 decedents.  Of 
the estates that elected at least one provision, the pre-
dominant	election	was	the	qualified	family-owned	busi-
ness deduction alone, with 656 estates that claimed the 
deduction.  The second largest election was special use 
valuation alone, with 425 estates that elected the provi-
sion.		Estates	elected	both	special	use	and	the	qualified	
family-owned business deduction in 332 cases.  Rarely, 
estates elected all three provisions, only in 21 cases.  
Some differences by size of gross estate are notable.  Of 
those estates that utilized a special business provision, 

Election of business provisions

(1) (2) (3) (4) (5) (6) (7) (8)
All estates 108,331     106,519    425           656           221           332           52             105           21             

Small ($675,000 under $2.5 million) 93,322          91,892      385           578           99             303           28             25             12             
Medium ($2.5 million under $5 million) 9,977            9,769        28             52             39             25             14             44             6               
Large ($5 million under $10 million) 3,454            3,329        **12 21             55             **4 **10 20             **3
Very Large ($10 million or more) 1,578            1,529        ** 5               28             ** ** 16             **

**Data combined to prevent disclosure of individual taxpayer data.

SUV & 
QFOBI

SUV  &
DOT

Figure A—Election of Special Business Provisions [1], by Size of Total Gross Estate

[1] Special use valuation is abbreviated as SUV, the qualified family-owned business interest deduction is abbreviated as QFOBI, and the deferral of taxes
 is abbreviated as DOT.

QFOBI & 
DOT

SUV,
QFOBI & 

DOT

Size of total gross estate No
elections

Total
number of 

estates
SUV only QFOBI only DOT only
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smaller	estates	tended	to	elect	only	the	qualified	family-
owned business deduction, while larger estates tended 
to elect only the deferral of taxes.  

Federal Estate Tax Law and the   
 Decedent Population

The estate of a decedent who, at death, owns assets 
valued in excess of the estate tax applicable exclusion 
amount,	or	filing	threshold,	must	file	a	Federal	estate	tax	
return, Form 706, U.S. Estate (and Generation-Skipping 
Transfer) Tax Return.  For decedents who died in 2001, 
the exclusion amount was $675,000.  For estate tax 
purposes, the value of property included in gross estate 
is	 fair	market	 value	 (FMV),	 defined	 as	 “the	 price	 at	
which the property would change hands between a will-
ing buyer and a willing seller, neither being under any 
compulsion to buy or to sell and both having reasonable 
knowledge of all relevant facts,” according to Regulation 
20.2031-1(b) of the Internal Revenue Code (IRC) [3].  
The gross estate consists of all property, whether real or 
personal, tangible or intangible, including “all property 
in which the decedent had an interest at the time of his 
or her death and certain property transferred during the 
lifetime of the decedent without adequate consideration; 
certain property held jointly by the decedent with others; 
property over which the decedent had a general power 
of appointment; proceeds of certain insurance policies 
on the decedent’s life; dower or curtesy of a surviving 
spouse; and certain life estate property for which the 
marital	deduction	was	previously	allowed”	[4].		Specific	
items of gross estate include real estate, cash, stocks, 
bonds, businesses, and decedent-owned life insurance 
policies, among others.  Assets of gross estate are valued 
at a decedent’s date of death, unless the estate’s executor 
or administrator elects to value assets at an alternate valu-
ation date, 6 months from the date of death, described in 
IRC section 2032.  Alternate valuation may be elected 
only if the value of the estate, as well as the estate tax, 
is reduced between the date of death and the alternate 
date.  The estate tax return is due 9 months from the 
date	of	the	decedent’s	death,	although	a	6-month	filing	
extension is allowed.

In 2001, an estimated 108,330 individuals died with 
gross estates above the estate tax exclusion amount.  

u

These decedents owned more than $198.8 billion in total 
assets and reported almost $20.8 billion in net estate tax 
liability.  Decedents for whom an estate tax return was 
filed	represented	4.6	percent	of	all	deaths	that	occurred	
for Americans during 2001, according to vital statistics 
data collected by the U.S. National Center for Health 
Statistics.  Estate tax decedents for whom a tax liability 
was reported, 49,845, represented 2.1 percent of the 
American decedent population for 2001 [5].  

Data Sources and Limitations

The Statistics of Income Division (SOI) of the 
Internal Revenue Service (IRS) collects and publishes 
data from samples of administrative tax and information 
records.   With its annual Estate Tax Study, SOI extracts 
demographic,	financial,	and	asset	data	from	Federal	es-
tate tax returns.  These annual studies allow production of 
a	data	file	for	each	filing,	or	calendar,	year.		By	focusing	
on	a	single	year	of	death	for	a	period	of	3	filing	years,	
the study allows production of periodic year-of-death 
estimates.  A single year of death is examined for 3 years, 
as 99 percent of all returns for decedents who die in a 
given	year	are	filed	by	the	end	of	the	second	calendar	year	
following the year of death [6].  The Estate Tax Study 
for the period 2001-2003 concentrates on Year-of-Death 
2001, the year of death for which weighted estimates are 
presented in this paper [7].  Unweighted year-of-death 
records for decedents who died in 1998, collected during 
Filing Years 1998-2000, are also included in the section 
entitled “Logistic Regression Models.”  

Special Use Valuation

With the Tax Reform Act of 1976, Congress pro-
tected U.S. farms and closely held businesses by pro-
viding for special use valuation of decedents’ interests 
in real property devoted to such businesses.  For estate 
tax purposes, the value of property included in gross 
estate, including real property, is generally the fair 
market value based on property’s potential “highest and 
best use.”  However, for real property that is used by a 
decedent or family member in a farm or other business 
as of the decedent’s date of death, as well as in 5 of 8 
years preceding death, the executor may elect to value 
such	property	 at	 its	 “qualified,”	 or	 actual,	 use in the 

u

u
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business, if certain requirements are met.  According 
to the IRC, the term “family member” may include any 
ancestor of the decedent; the spouse of the decedent; a 
lineal descendant of the decedent, decedent’s spouse, or 
parent; or the spouse of any lineal descendant.  

In order for an estate to elect special use valuation 
(SUV), several other conditions must be met: real prop-
erty	must	be	transferred	from	the	decedent	to	a	qualified	
family member of the decedent; at least 25 percent of 
the adjusted value of the gross estate must consist of 
real	 property,	where	 adjusted	value	 is	 defined	 as	 fair	
market value of real property less any debts against the 
property; at least 50 percent of the adjusted value of 
the gross estate must consist of real and other business 
property; and the estate must consent to payment of ad-
ditional estate tax—“recapture tax”—if,  within 10 years 
of	death,	the	property	is	sold	to	an	unqualified	heir;	if	the	
property	is	no	longer	used	for	a	qualified	purpose;	or	if	
the	qualified	heir	ceases	to	fully	participate	for	more	than	
3 years in any 8-year period.  For estates of decedents 
who died in 2001, the allowed maximum reduction in 
value between fair market value and special use value 
was $800,000 [8].

For 2001, an estimated 831 estates elected SUV for 
real property (see Figure B).  Although this accounted 
for only 0.8 percent of all estates, it represented about 
5.3 percent of estates that reported closely held or agri-
business assets, i.e., those estates that were potentially 
qualified	to	elect	special	use.		Of	those	831	estates,	about	
half—405 estates—made protective elections of special 
use.  An estate’s executor may make a protective election 

if	he	or	she	must	file	a	Federal	estate	tax	return	prior	to	
final	 determination	of	 real	 property’s	 qualification	 as	
special use property.  As such, the election is contingent 
upon	property’s	value	as	finally	determined.		Estates	with	
protective elections do not separately report fair market 
and	qualified	use	values	for	real	property.		

Smaller estates were more likely to claim this provi-
sion than their larger counterparts.  As shown in Figure 
B, about 0.8 percent of small estates (those with less than 
$2.5 million in total gross estate) claimed SUV, while 
only 0.3 percent of their very large counterparts used 
the provision.  Reported fair market value for qualify-
ing property was $377.2 million, and the property value 
decreased to $189.0 million for qualifying purposes.  

Qualified Family-Owned Business   
 Deduction

With the Taxpayer Relief Act (TRA) of 1997, 
Congress sought to safeguard family-run businesses 
and provided an estate tax deduction for “qualifying” 
family-owned business interests included in gross es-
tate	 and	 transferred	 to	 qualified	heirs.	 	Requirements	
for utilizing the deduction are, with a few exceptions, 
similar to those for electing special use valuation.  The 
principal place of business must be the United States, 
and the business entity must not have debt or equity 
that is tradable on an established securities market or 
secondary market.  In addition, at least 50 percent of 
the business entity must be owned by the decedent and 
members of the decedent’s family; or 70 percent must 
be owned by members of two families (and 30 percent 

u

(1) (2) (3) (4)
All estates 108,330 12,683 831 12.6%

Small ($675,000 under $2.5 million) 93,321 10,925 728 14.1%
Medium ($2.5 million under $5 million) 9,977 1,102 74 27.1%
Large ($5 million under $10 million) 3,449 442 23 28.1%
Very Large ($10 million or more) 1,583 214 5 8.3%
[1] Coefficient of variation (CV), the ratio of an estimate's standard error to the estimate, is used to measure the 

magnitude of potential sampling error.  The CVs shown refer to the number of estates that elected SUV.

Figure B—Number of Estates, Estates with Potentially Qualifying Assets, 
and Number that Elected SUV, by Size of Total Gross Estate

CV [1] 
Size of total gross estate

Total number of 
estates

Estates with 
potentially

qualifying assets

Estates that 
elected SUV



- 96 -

gangi, Henry, and raub

owned by the decedent and members of the decedent’s 
family); or 90 percent must be owned by three families 
(and 30 percent owned by the decedent and members of 
the decedent’s family).  

Several other requirements must be met, includ-
ing: the value of the business interest must constitute at 
least 50 percent of a decedent’s total gross estate less 
deductible debt, expenses, and taxes;  and the decedent 
or family member must have been actively engaged in 
the business.  An additional estate tax is imposed if, 
within a period of 10 years after the decedent’s death 
and	before	 the	qualified	heir’s	death,	 the	heir	 fails	 to	
actively participate in the business for a total of 3 years 
in any 8-year period [9].

The	qualified	 family-owned	business	 interest	 de-
duction (QFOBI), initially set at $675,000 in TRA of 
1997, could not exceed $1.3 million when combined 
with the applicable exclusion.  Therefore, as the exclu-
sion increased incrementally from $625,000 in 1998 to 
$1.5 million in 2004, the maximum allowable deduction 
decreased	 and	finally	 disappeared	 in	 2004	 [10].	 	 For	
decedents who died in 2001, the available deduction for 
qualified	family-owned	business	was	$625,000.

Only a small fraction of estates utilized the QFOBI 
in calculating taxable estate and estate tax liability.  For 
Year-of-Death 2001, an estimated 1,114 estates, or 1.0 
percent of the total, claimed the deduction, while small 
estates made up the majority, 82.3 percent, of those that 
used the deduction (see Figure C).  These 1,114 estates 

comprised about 7.1 percent of estates that reported 
closely held or agribusiness assets, i.e., those estates 
that	were	 potentially	 qualified	 to	 elect	QFOBI.	 	The	
likelihood that an estate would claim the deduction 
was greater for larger estates.  Among all very large 
estates, 1.5 percent claimed the deduction, while only 
1.0 percent of all small estates claimed the deduction.  
For all estates, the deduction reduced taxable estate by 
$626.8 million.  

Deferral of Tax and Installment   
 Payments

Congress has also enacted legislation that lessens the 
burden of certain estate tax payments for estates com-
prised largely of closely held businesses.  The legislation 
provides estates with an alternative to selling closely 
held interests in order to meet Federal tax responsibili-
ties.  Initially, in 1958, Congress introduced installment 
payments for these estates, and then, in 1976, Congress 
established rules for deferral of payments.  Under the 
law, an estate’s executor can elect to pay estate tax at-
tributable to the business interest in two or more, but not 
exceeding ten, equal payments and defer tax payments 
for 5 years, paying only interest on the tax liability dur-
ing the deferral period.   

In order to qualify for deferral of tax and installment 
payments, at least 35 percent of the value of adjusted 
gross estate must consist of an interest in a closely held 
business.		Under	the	law	in	effect	for	2001,	the	definition	
of closely held business included three types of entities: 

u

(1) (2) (3) (4)
All estates 108,330 15,612 1,114 10.3%

Small ($675,000 under $2.5 million) 93,321 11,711 917 12.2%
Medium ($2.5 million under $5 million) 9,977 2,219 127 18.2%
Large ($5 million under $10 million) 3,449 1,056 47 17.6%
Very Large ($10 million or more) 1,583 626 23 0.4%
[1] Coefficient of variation (CV), the ratio of an estimate's standard error to the estimate, is used to measure 
the magnitude of potential sampling error.  The CVs shown refer to the number of estates that elected QFOBI.

Figure C—Number of Estates, Number with Potentially Qualifying Assets, 
and Number that Elected QFOBI, by Size of Total Gross Estate
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(1) sole proprietorships, (2) partnerships, if the estate 
included 20 percent or more of the partnership interest or 
if the partnership had 15 or fewer partners, and (3) cor-
porations, if the estate included 20 percent or more of the 
voting stock of the corporation or if the corporation had 
15 or fewer shareholders.   An executor’s decision to use 
these payment options is not contingent on the election 
of special use valuation.  However, if the executor elects 
special use valuation, the same, lower value must be used 
for determining the deferred tax payments [11].  

Relatively few estates for 2001 decedents chose to 
elect deferral of tax (DOT) due to ownership interests 
in closely held businesses.  As shown in Figure D, an 
estimated 382 estates, or 0.4 percent of all estates and 2.4 
percent of estates that reported closely held and agribusi-
ness assets (potentially qualifying assets), elected to use 
this provision.  Larger estates were much more likely to 
use the provision than their smaller counterparts.  About 
0.2 percent of small estates (those with less than $2.5 
million in total gross estate) used DOT.  This percent-
age increased dramatically as the size of gross estate 
increased, as 2.9 percent of the largest estates (those 
with $10 million or more in total gross estate) used the 
provision.  Estates deferred more than $365.6 million in 
estate tax, or 58.9 percent of reported tax liabilities for 
those estates; closely held business assets for which tax 
was deferred totaled $1.3 billion.  

Logistic Regression Models

Using unweighted estate tax records from Years-of-
Death 1998 and 2001, we created a data set of 37,179 
records.  Of these, 211 elected SUV, 389 elected DOT, 

u

and 485 elected QFOBI.  Next, we determined eligibil-
ity criteria for each provision.  Ideally, the sample used 
for the regression analysis should include only estates 
that were eligible to claim the provisions.  This would 
have allowed for a cleaner analysis of the factors that 
executors of eligible estates use to determine whether 
or not to claim a business provision.  Unfortunately, 
eligibility cannot be directly observed in the data, as 
requirements for claiming the business provisions are 
numerous and complex, and data reported on estate tax 
returns are limited.  

Unable to observe eligibility directly, we created 
partial eligibility criteria based on available information.  
As noted previously, each provision has an eligibility 
requirement based on the percentage of an estate com-
posed of farms or closely held business assets.  Since 
SOI captures asset type information in its data editing 
process,	it	was	possible	to	create	a	filter	to	identify	po-
tentially eligible records based on the presence of farm 
or closely held business assets.  Using this eligibility 
criterion resulted in 11,187 records with potentially 
qualifying assets, about 30 percent of the observations 
in our data set.  

We	attempted	to	further	refine	our	eligibility	filters	by	
limiting our data set to returns for which the proportion of 
assets held in farms or closely held businesses matched 
the statutory requirements for each provision.   The re-
sults of this process produced an unacceptable level of 
classification	error	(i.e.,	returns	that	were	determined	to	
be ineligible claimed the provisions), which may have 
occurred	due	to	the	difficulty	in	correctly	coding	business	
asset types during the data collection process.

(1) (2) (3) (4)
All estates 108,330 15,612 382 11.8%

Small ($675,000 under $2.5 million) 93,321 11,711 147 26.5%
Medium ($2.5 million under $5 million) 9,977 2,219 103 18.7%
Large ($5 million under $10 million) 3,449 1,056 86 13.7%
Very Large ($10 million or more) 1,583 626 46 2.7%
[1] Coefficient of variation (CV), the ratio of an estimate's standard error to the estimate, is used to measure 
the magnitude of potential sampling error.  The CVs shown refer to the number of estates that elected DOT.

Figure D—Number of Estates, Estates with Potentially Qualifying Assets, 
and Number that Elected DOT, by Size of Total Gross Estate
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The Model

Our initial approach was to determine one model 
for each provision using explanatory variables sug-
gested by prior research.  For each estate tax return i, 
we consider the following model on the log-odds of 
the probability of the taxpayer claiming a provision:   

where iπ  is the probability of taxpayer i  using the 
provision of interest, x  is the matrix of 19 explanatory 
variables from Figure E, and b is the vector of slope 
coefficients	for	each	corresponding	 x -variable.

We	fit	our	model	to	each	provision	separately.		Since	
there is some similarity between the eligibility require-
ments	for	the	three	provisions,	the	same	model	was	fit	
to a dichotomous variable that indicates election or non-
election of at least one business provision.  The results 
from these four models are displayed in Figure F.

Figure E—Explanatory Variables and Their Definitions 

Variable Definition Variable Definition 

Age Age, in years, of decedent at time of death Gross estate Amount, in millions of dollars, of total 
gross estate 

Married, Single, 
Widow 

Dummy variables indicative of marital 
status of the decedent 

Marginal tax rate Projected marginal tax rate of estate prior 
to claiming any of the provisions 

at time of death 

Retired Dummy variable indicating that decedent 
was retired  

Farm Amount, in millions of dollars, of farm 
assets 

Female Dummy variable indicating that decedent 
was female 

Closely held Amount, in millions of dollars, of total 
gross estate 

Liquidity Cat 1 Dummy variable indicating that estate had a 
liquidity ratio of 0.25 or less (see endnote 
12)

Year Dummy variable indicating that the record 
was from Year of Death 2001 

Liquidity Cat 2 Dummy variable indicating that the estate 
had a liquidity ratio of 0.25 but less than 1 

Widow*Female Interaction variable of Widow and Female 

Liquidity Cat 3 Dummy variable indicating that estate had a 
liquidity ratio of 1.0 but less than 5 

Single*Female Interaction variable of Single and Female 

Liquidity Cat 4 Dummy variable indicating that estate had a 
liquidity ratio of 5 or greater 

Married*Female Interaction variable of Married and 
Female 

Debts Amount, in millions of dollars, of debts 
owed by the estate 

Debts*Farm Interaction variable of Debts and Farm 

Age*Retired Interaction variable of Age and Retired 

1log i
i

i

x
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Variables
Estimate
(SE)

Estimate
(SE)

Estimate
(SE)

Estimate
(SE)

Age 0.000372 -0.00076 0.00264 * 0.00136
(0.00189) (0.00177) (0.00126) (0.00118)

Married 0.7441 * 0.7632 * -0.5220 * -0.1175
(0.3520) (0.1988) (0.2058) (0.1499)

Single -0.1422 -0.2398 -0.3055 -0.2407
(0.4826) (0.2835) (0.2931) (0.2151)

Widow 0.7775 * 0.3138 -0.1933 -0.0381
(0.3787) (0.2275) (0.2397) (0.1788)

Retired -2.3365 -1.6085 -0.7653 -1.6585 *
(1.3810) (1.0975) (1.3461) (0.8598)

Female 0.1441 -0.6373 -0.4038 -0.6246 *
(0.5990) (0.4134) (0.3947) (0.3112)

Liquidity Cat 1 -0.8662 0.0536 -0.5644 -0.0407
(0.6949) (0.6616) (0.6462) (0.5108)

Liquidity Cat 2 -0.6605 * -0.2500 -0.5166 -0.2640
(0.3456) (0.3297) (0.3215) (0.2543)

Liquidity Cat 3 -0.7907 * -0.7576 * -1.0798 * -0.8373 *
(0.2336) (0.2229) (0.2201) (0.1718)

Liquidity Cat 4 -0.9110 * -0.6008 * -1.2975 * -0.9322 *
(0.3045) (0.1946) (0.2971) (0.1545)

Debts 0.1921 * 0.0703 0.00549 -0.0585
(0.0714) (0.0633) (0.0208) (0.0333)

Gross Estate -0.3828 * -0.2224 * 0.000567 -0.00483 *
(0.0499) (0.0335) (0.0022) (0.00194)

Marginal tax rate 0.3741 * 0.5248 * 0.2000 * 0.2026 *
(0.0486) (0.0335) (0.0170) (0.0138)

Farm 0.5715 * 0.1363 * 0.1302 * 0.1701 *
(0.0726) (0.0535) (0.0455) (0.0360)

Closely held 0.0802 0.1845 * ** **
(0.0817) (0.0240) ** **

Year 0.0812 -0.1835 -0.3052 -0.1725
(0.1774) (0.1222) (0.1415) (0.0950)

Widow*Female -0.0501 0.2892 0.4174 0.5260
(0.6468) (0.4541) (0.4452) (0.3450)

Single*Female 0.1627 -0.1213 0.4727 0.4011
(0.9178) (0.7601) (0.6625) (0.5079)

Married*Female -0.4426 0.2409 -0.4296 0.1943
(0.6729) (0.4614) (0.5228) (0.3550)

Debts*Farm -0.0242 0.0316 * -0.00779 -0.00676
(0.0205) (0.0135) (0.0131) (0.0103)

Age*Retired 0.0267 0.0141 0.00198 0.0141
(0.0167) (0.0137) (0.0167) (0.0107)

* Indicates significance at 5 percent
** Variable was excluded from model because inclusion resulted in a model convergence problem

Figure F—Estimated Coefficients and Standard Errors, by Model

SUV QFOBI DOT At least one 
provision
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Model Results

Prior to modeling the data, we expected that liquidity 
would have a strong, inverse relationship with the likeli-
hood of claiming each of the three business provisions, 
since, for all three provisions, eligibility requires that an 
estate holds a certain percentage of its assets in farms 
or closely held businesses, i.e., illiquid assets [12].  As 
shown in Figure F, the expected outcome was validated, 
as each of the three single provision models and the com-
bined	model	have	significant,	relatively	large,	negative	
coefficients	for	the	highest	liquidity	categories.

Based	on	our	earlier	findings,	we	further	expected	to	
find	that,	ceteris paribus, larger estates were less likely 
to claim the SUV and QFOBI provisions, but more likely 
to claim the DOT provision.  These expectations were 
partially	validated.		Gross	estate	was	significant	in	the	
SUV	and	QFOBI	models	with	a	negative	coefficient.		
In the DOT model, gross estate had a small, positive 
coefficient,	 consistent	with	 expectations,	 but	 it	was	
not	significant	at	the	5-percent	level.		In	the	combined	
model,	gross	estate	has	a	small,	but	significant	negative	
coefficient.

We also expected that a higher marginal tax rate 
before claiming any provisions would increase the eco-
nomic value of claiming a provision and would increase 
the log-odds.  This expectation was validated, as mar-
ginal	tax	rate	has	a	significant,	relatively	large	coefficient	
in	each	of	the	four	models.		The	coefficient	is	largest	in	
the SUV and QFOBI models, which is unsurprising, 
given that these two provisions have the effect of directly 
decreasing the size of taxable estate.  

Our	expectations	about	the	significance	of	debt	and	
demographic	variables	were	less	defined.		The	amount	
of	debt	held	by	an	estate	was	significant	only	in	the	SUV	
model,	with	 its	 positive	 coefficient	 that	 suggests	 that	
holding more debt tended to increase the likelihood of 
claiming this provision, ceteris paribus.  Interestingly, 
while	debt	alone	was	not	significant	in	the	QFOBI	model,	
the	interaction	of	debts	and	farm	assets	had	a	significant,	
positive	coefficient.

Regarding demographic characteristics, age had a 
significant	effect	only	in	the	DOT	model,	with	a	small,	

positive	coefficient,	suggesting	that	older	decedents	were	
more likely to claim this provision.  Being married had 
a	significant	effect	in	each	of	the	three	single	provision	
models, although the direction of this effect was varied.  
Ceteris paribus, married decedents were more likely to 
claim the SUV and QFOBI provisions, but less likely 
to claim the DOT provision.  Widowed decedents were 
also more likely to claim the SUV provision than single 
or divorced decedents.  Gender and retired status had 
no	significant	impact	in	any	of	the	three	single	provi-
sion	models,	but	they	were	significant	in	the	combined	
model, with female and retired decedents less likely to 
claim at least one of the provisions than male decedents 
and	single	or	married	decedents.	 	The	significance	of	
gender and retired status in only the combined model 
may be attributable to the larger number of observa-
tions in the subsample of estates that claim one or more 
provisions.  

Conclusions

Our	findings	reveal	that,	holding	other	factors	con-
stant, smaller estates were more likely to claim the SUV 
and QFOBI provisions than their larger counterparts, and 
that estates facing higher marginal tax rates were more 
likely to claim each of the three provisions.  From a 
demographic	standpoint,	being	married	had	a	significant	
impact on the odds of claiming each of the provisions, 
although the direction of the effect varied.  While being 
married increased the likelihood of claiming SUV or 
QFOBI, holding other factors constant, it decreased the 
likelihood of claiming DOT.  

While we believe that this research provides a start-
ing	point	 for	 understanding	 the	 factors	 that	 influence	
the utilization of special estate tax provisions for farms 
and closely held businesses, to expand our understand-
ing of this topic, there are at least three main areas for 
future	research.		First,	an	approach	that	would	specifi-
cally model the decisionmaking process that faces the 
executor of an estate would be enlightening.  Ideally, this 
model would incorporate not only the choice to claim 
one business provision, but also the choice to claim a 
combination of business provisions, if eligible for more 
than one.  In addition, the interaction of other choices, 
such as marital and charitable deductions, should be 
incorporated into this model, as should some measure of 

u
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the	financial	constraints	placed	on	an	estate	by	claiming	
these provisions.  

Second, when analyzing the characteristics of es-
tates that claim these provisions, time is a factor worth 
examining.  Estate tax returns provide a snapshot of 
the decedent’s assets and debts at the time of death, 
but reveal no information about these characteristics at 
earlier points in time.  This is particularly relevant to our 
analysis because we have no way of observing what, if 
any, choices were purposefully made prior to death so 
that an estate would qualify for a business provision.  
While the tax law contains a provision that limits the 
ability of individuals to shift their assets in a tax-ben-
eficial	way	 prior	 to	 death,	 it	 is	 possible	 that	 various	
forms of planning are used by some individuals or their 
representatives	in	order	to	qualify	for	these	beneficial	
business provisions [13].  

Finally,	while	modeling	with	records	identified	by	
our asset eligibility criteria is clearly superior to modeling 
with the entire dataset, modeling with only records for 
estates that are eligible would provide more insight into 
why estates choose to elect a special business provision.  
While eligibility cannot be observed in the data currently 
available, it is possible that future changes to tax law or 
reporting requirements could obviate this limitation.      
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in The Complete Internal Revenue Code, Research 
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in 1998 to $850,000 in 2004.  However, in 2001, 
Congress enacted legislation in the Economic 
Growth and Tax Relief Reconciliation Act that 
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deaths in 2010.  
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installment payments, see Code section 6166 in 
The Complete Internal Revenue Code, Research 
Institute of America, July 2001, p. 9,125.

[12]	 Liquidity	 ratio	 is	 defined	 as	 liquid	 assets	 (cash	
and cash management accounts, State and local 
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Corporation Life Cycles:  Examining Attrition 
Trends and Return Characteristics in Statistics 

of Income Cross-Sectional 1120 Samples   
Matthew L. Scoffic, Internal Revenue Service

E very year, the Statistics of Income (SOI) Di-
vision of the IRS produces a cross-sectional 
study of 1120 series corporation tax returns 

based on a weighted sample of the population of cer-
tain Forms 1120.  The microdata from this study are 
used to produce tabular data for public dissemination 
through SOI’s Taxstats Web site and many regular and 
occasional paper publications.  SOI also uses these data 
to produce custom tabulations for internal and external 
customers in many disciplines.

While these data provide an excellent source for 
annual	financial	tabulations	and	for	developing	an	un-
derstanding of the implications of tax policy for the 
taxpaying public, there is less focus on the implicit 
longitudinal characteristics of the SOI sample or the 
changing	 population	 of	 1120	 filers	 from	 which	 SOI	
draws its sample.  This paper examines the extent to 
which business entities in the SOI sample survive, per-
ish, or appear inconsistently, and to what extent returns 
from	 these	 three	 categories	 differ	 in	 certain	 financial	
characteristics.  Examining these issues can provide in-

sight into what types of business entities tend to survive 
and perish over a period of time and can provide users 
of SOI tabular data with insight into whether estimates 
are based on the same entities over time, or a sample 
that changes with regularity.

u The SOI 1120 Sample

Before examining the performance of the SOI 
sample	over	a	period	of	years,	it	is	first	useful	to	under-
stand the structure of the cross-sectional SOI sample 
itself.  The SOI study’s target population consists of all 
for-profit	corporations	that	are	required	to	file	an	1120	
series tax return that is included in the SOI study.  SOI 
studies Forms 1120, 1120-A, 1120-F, 1120-L, 1120-
PC, 1120-REIT, 1120-RIC, and 1120-S.  The survey 
population consists of those returns that are selected 
for the SOI sample and are processed on the IRS Busi-
ness Master File (BMF).  SOI has been using a sample 
of 1120 series returns to estimate population values for 
over	50	years.		The	first	SOI	sample	was	implemented	
for	Tax	Year	1951,	when	41.5	percent	of	the	1120	fil-

Year Sample Size Population Size Sample as Percentage of Population 

1993 91,687 4,340,688 2.11 

1994 95,021 4,700,268 2.02 

1995 97,461 4,852,305 2.01 

1996 94,172 4,968,490 1.90 

1997 98,204 5,102,958 1.92 

1998 137,600 5,204,810 2.64 

1999 140,984 5,315,461 2.65 

2000 144,917 5,429,473 2.67 

2001 146,479 5,563,781 2.63 

2002 145,353 5,701,024 2.55 

2003 141,678 5,845,672 2.42 

Figure A—Sample and Population Size for SOI 1120 Study 1993–2003
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ing population was sampled.  In 1951, the total num-
ber	of	Forms	1120	filed	was	687,000,	and	SOI	selected	
285,000 returns for its study.  The sample size as a per-
centage	of	the	population	has	fluctuated	over	time,	and,	
in the last tax year for which data are available, 2003, 
the SOI sample was 2.4 percent of the total population 
of over 5.8 million 1120 returns, or 141,678 returns.  
In the 10 years that are the focus of this paper, the SOI 
sample size has increased from 91,687 returns in 1993 
to 141,678 returns in 2003.

To determine whether an individual return is to be 
sampled, an algorithm is used to transform the Employ-
er	Identification	Number	(EIN)	of	the	tax	return,	and	a	
Transform	Taxpayer	 Identification	Number	 (TTIN)	 is	
produced.  This TTIN can be characterized as a pseu-
dorandom number; the same algorithm is used to pro-
duce the TTIN every year, so that the same algorithm 
applied to the same EIN will produce the same TTIN in 
any study year.  This implies that, with no change in the 
selection probability of the applicable stratum and no 
change in the stratum into which the return falls, a re-
turn selected in year one should be selected in year two, 
providing it is present in the population (and providing 
it	has	not	changed	its	EIN).		The	sample	is	stratified	by	
form type, size of total assets, and income, or in some 
cases form type and size of total assets alone.

Each stratum is associated with a sampling rate. 
The sampling rate is multiplied by 10,000 to create a 
four-digit number between 0000 and 9999.  If the last 
four digits of the TTIN for a given return are less than 
or equal to this number, the return is selected for the 
SOI study.  For example, the last four digits of a TTIN 
may equal 3025.  If the product of the sampling rate * 
10,000 is equal to 7777 (0.7777 * 10,000) for this stra-
tum, the return will be selected for the SOI study.  If the 
product is 2222 (0.2222 * 10,000), the return will not 
be selected for the SOI study.  The stratum’s sampling 
rate determines the probability of a return in that stra-
tum being selected.  A higher value of the sampling rate 
for a given stratum equates to a higher probability of a 
return in that stratum being selected for the SOI study.  
This probability can range from a fraction of 1 percent 
to 100 percent.  The rate at which returns are sampled 
depends on their size (measured in income and/or total 
assets) and form type.  Generally, the sampling rates in-

crease as size increases for all form types.  Over the 10 
years studied, sampling rates have tended to increase 
for most size classes and form types, but rates for some 
strata have declined [1].

This selection process takes place over a 24-month 
window of time.  Typically, more than 15 percent of 
corporations	 file	 tax	 returns	 based	 on	 a	 noncalendar	
year accounting period.  Therefore, a selection window 
of July through the following June is necessary for any 
given study year.  The time necessary is extended fur-
ther	 due	 to	 optional	 extensions	 of	 the	 filing	 deadline	
which are used by many corporations, and by admin-
istrative processing delays on the part of the IRS.  A 
study for Tax Year X is therefore composed of returns 
selected from July of year X through June of year X+2.  
Some returns can also be added after this time if their 
presence in the SOI study is deemed critical [2].

Returns that would meet the sampling criteria may 
not	be	selected	because	they	have	been	filed	later	than	
SOI’s deadline for selection, because the returns were 
not available to the SOI Division while being held by 
another IRS function, or because data processing errors 
caused the returns to fall into an incorrect stratum [3].

u Data Description

In order to study the behavior of returns in the SOI 
sample, I compiled 10 years of selected data from SOI’s 
cross-sectional 1120 study, Tax Year 1994 to Tax Year 
2003.		To	create	the	dataset,	I	first	identified	all	unique	
EINs in the Tax Year 1993 study.  There were 86,632 
records	in	this	dataset.		I	used	this	file	as	the	“base	year”	
to which I compared SOI studies from other years to 
determine the presence or absence of the base-year re-
turns in subsequent years.  I performed these interyear 
comparisons by matching datasets on EIN.  For the 
subsequent 10 years of SOI studies from 1994 through 
2003, I compiled ten datasets containing selected data 
items of base-year returns which were selected again 
in the subsequent years, and ten datasets containing se-
lected data items of base-year returns not selected in 
the subsequent SOI study years [4].

In each year, I analyzed whether the base-year re-
turn was present or not in the SOI sample and compiled 
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an inventory dataset for each return which represents 
its life cycle throughout the 10 years.  This dataset con-
tained all EINs from the base year and an observation 
for each subsequent study year, 1994-2003.  The obser-
vation could take on a value of “0” if the return was not 
present in the study year, or “1” if the return was pres-
ent in the study year.  The dataset also contained a data 
item representing the life cycle of the return.  This data 
item was a concatenation of all the study-year observa-
tions (“0” or “1”) and represented the 10-year pattern 
of presence or absence for each base-year return.  The 
final	data	 item	in	 the	dataset	was	a	sum	of	all	“1”	or	
“0” study-year observations, representing the number 
of years in which the return appeared in the SOI study 
from 1994-2003.

I then used the inventory dataset to group the base-
year returns into three categories based on a character-
ization of their life cycles over the 10 years studied.  
The categories used were Consistent, Inconsistent, and 
Terminal.	 	I	defined	a	Consistent	return	as	one	that	is	
present in at least 8 out of the 10 years analyzed but 
has not been absent from the sample in the last 2 years, 
2002	and	2003	[5].		I	defined	an	Inconsistent	return	as	
one that was present in less than 8 years of SOI stud-
ies and was not categorized as a Terminal Return.  I 
defined	a	Terminal	return	as	one	whose	life	cycle	pat-
tern	matched	one	of	nine	specific	patterns	that	indicate	
a return left the sample and never returned.  Figure A 
shows the patterns used to characterize Terminal re-
turns.  A “1” indicates the return is present for the year, 
and a “0” indicates the return is absent.  Each of the ten 
characters comprising the life cycle pattern represents 
a study year, 1994-2003.

Because returns can be present in the SOI study and 
present in the population, absent from the SOI study 
and absent from the population, or absent from the SOI 
study	but	present	in	the	population,	I	matched	files	of	
base-year returns not present in each subsequent year to 
administrative	IRS	population	files	to	examine	the	ul-
timate status of the returns [6].  In some cases, it could 
be shown that, although base-year returns were missing 
from the SOI sample for a subsequent year, they were 
present	in	the	population	of	1120	filers.		These	returns	
are in general presumed not to have met the SOI selec-
tion criteria for the study year, subject to the limitations 

of the selection process described previously.  In other 
cases, it could be shown that a base-year return not 
selected for a subsequent SOI study was not selected 
because it was no longer present in the population of 
1120	filers.		It	is	of	use	to	determine	which	nonselected	
base-year returns remained in the population and are 
available for selection to demonstrate whether a return 
has simply failed to meet SOI sampling criteria or is in 
fact	no	longer	required	to	file	an	individual	1120	series	
tax return [7].

In order to determine whether Consistent, Incon-
sistent, and Terminal returns differed qualitatively in 
terms	of	their	financial	characteristics	or	other	charac-
teristics, I compiled these three groups of returns and 
determined	the	means	of	four	key	financial	data	items	
and the age of the entity.  I compared the means of the 
data items and the ages in each category and tested the 
differences	 to	 determine	 statistical	 significance.	 	The	
four	financial	items	compared	were	Total	Receipts,	Net	
Income, Total Assets, and Net Worth [8]. The age of 
the entity is the number of years between the date of 
incorporation and the base year, 1993 [9].

u Data Analysis

Figure C presents the count of base-year returns 
present	 in	each	subsequent	SOI	study	and	filing	pop-
ulation from 1994-2003 as well as the percentage of 

Life Cycle Patterns Characterizing Terminal Returns 
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From left to right, each character represents an SOI study year, 1994-2003. 

A “0” indicates absence from the SOI study for the year. 

A “1” indicates presence in the SOI study for the year. 

Figure B—Criteria for Terminal Return Definition
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base-year returns present in the sample and population 
in subsequent years.  The same data are represented 
graphically in Figure D.

In the base year of 1993, some 86,632 returns were 
selected for the SOI study.  The number of base-year re-
turns remaining in the SOI study declined steadily over 
the 10 years analyzed, with 85.8 percent, or 74,303 of 
the original base-year returns selected for the 1994 SOI 
study and only 41.7 percent, or 36,159 of the original 
base-year returns still present in the most recent SOI 
study for 2003.  The number of base-year returns avail-
able to be selected from the population declined in a 
very similar fashion, with 91.5 percent, or 79,243 of the 
base-year returns remaining in the population in 1994 
and 49.0 percent, or 42,414 returns remaining in the 
population	of	1120	filers	in	2003.

The difference in the counts and percentages of 
base-year returns in the sample and population can be 
attributed to a number of factors.  Returns which exhibit 
a year-to-year change in total assets and/or income may 
qualify for a sampling rate different than that applied in 
a prior year in which the returns were selected for the 
SOI study.  Similarly, a change to the sampling rates 
for a stratum may cause returns that were selected in 
that stratum previously to no longer qualify for sample 

selection based on the values of their TTINs.  There 
are other administrative and processing reasons that 
may prevent a negligible number of returns from being 
included in the SOI study.  These reasons include re-
jection by tax examiners from the SOI study, improper 
coding or processing, unavailability of returns, or late 
filing	of	desired	returns	[10].

Since the difference between the base-year returns 
present in the sample and population is small and stable 
throughout the 10-year period, it can be concluded that 
the majority of returns which leave the SOI study have 
also	 left	 the	 population	 of	 1120	filers.	 	 For	 example,	
in 1994, only 5.7 percent (4,940) of base-year returns 
were absent from the sample but present in the popula-
tion.  In 2003, this percentage had increased to only 7.3 
percent (6,255).  Although the SOI sample size has in-
creased over the 10-year period studied, sampling rates 
for	various	strata	have	fluctuated.		This	means	that,	in	
addition to any base-year returns with changes in to-
tal assets and/or income becoming ineligible for sam-
pling at prevailing rates, changes to the sampling rates 
in individual strata may make previously eligible re-
turns ineligible.  This helps explain why the percentage 
of  base-year returns in the population but not the sam-
ple has increased slightly over the 10 years observed.  
Since larger returns are sampled at a 100-percent rate, 

SOI Study 
Year

Base-Year 
Returns in 

Sample

Base-Year 
Returns in 
Population

Base Year % in 
Sample [1]

Base Year % in 
Population [2] 

1993 86,632 86,632 100 100 
1994 74,303 79,243 85.8 91.5 
1995 68,122 75,965 78.6 87.7 
1996 60,948 72,585 70.4 83.8 
1997 56,465 68,633 65.2 79.2 
1998 52,750 57,734 60.9 66.6 
1999 48,842 62,674 56.4 72.3 
2000 44,728 59,257 51.6 68.4 
2001 42,154 53,743 48.7 62.0 
2002 39,998 51,683 46.2 59.7 
2003 36,159 42,414 41.7 49.0 

[1] Percentage of base-year returns remaining in sample. 

[2] Percentage of base-year returns remaining in population.

Figure C—Presence of Base-Year Returns in SOI Sample and Population
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decreases in sampling rates tend to affect strata where 
smaller returns are located.  Any decreases in sampling 
rates could account for a loss of base-year returns, but 
only if they are still available in the target population.  
However, since Figures C and D indicate that the ma-
jority of the base-year returns leaving the sample have 
also left the population, it appears that most of the miss-
ing base-year returns have not survived as individual 
1120	return	filers.		They	may	no	longer	exist,	they	may	
file	a	non-1120	tax	return,	or	they	may	be	included	in	
the	consolidated	return	of	another	1120	filer.

When returns from the base year were grouped into 
categories based on their life cycle patterns, 37,614 re-
turns were observed to be consistently present in the 
SOI study from 1993-2003.  This category of returns 
was called Consistent.  The number of Inconsistent 
returns totaled only 9,482, showing that a relatively 
small number of returns appeared sporadically.  The 
Terminal return category contained a total of 39,536 
returns [11].

A	 pronounced	 and	 statistically	 significant	 differ-
ence in the means of all the data items was observed 
among the various categories of returns.  Figures F, 
G, and H summarize the means of the various catego-
ries.	 	The	statistical	 significance	of	 the	differences	of	
the means was determined by performing a t-test using 
SAS statistical software.  The results showed statistical 

significance	above	the	99-percent	level	for	comparison	
of all means among all categories.  

The means presented in Figures F, G, and H clearly 
show that Consistent returns appear on average to be 
much	 larger	 in	 terms	 of	 financial	 characteristics	 than	
either returns that appear in the SOI study only incon-
sistently or returns that have dropped out of the SOI 
sample and most likely the population as well.  Graphi-
cal	representations	of	financial	comparisons	are	shown	
in	Figures	J	through	M	in	the	appendix.		When	financial	
items from Consistent returns are compared to those of 
Terminal returns, all items are larger for Consistent re-
turns	by	significant	margins.		Average	Total	Receipts	for	
Consistent returns are 2.9 times larger than the average 
for Terminal, Net Income 3.3 times larger, Total Assets 
4.8 times larger, and Net Worth 7.5 times larger.  The 
largest differences in the averages are between Consis-
tent and Inconsistent returns.  Average Net Worth for 
Consistent returns is 21.1 times that of Inconsistent.  
Clearly, the returns that are consistently selected for the 
SOI sample have higher average levels of assets and 
income.  Although this may seem intuitive since larger 
returns fall into strata with higher sampling rates, in 
fact, the design of the sample leads to the same returns 
being selected each year in each stratum.  Therefore, 
barring changes to the sampling rates of the relevant 
strata, a small base-year return exhibiting no drop in 
assets or income and no change in form type would 
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Figure D—Presence of Returns from Base Year
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Figure E
By Type of Return

39,536, 46%

9,482, 11%

37,614, 43%

TERMINAL
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be expected in the sample again, just as would a large 
return in a stratum with a 100-percent selection rate.  In 
practice, sampling rates for certain strata have declined 
at times.  Most base-year returns that are not selected 
are demonstrably not in the population, but, for those 
smaller base-year returns that are in the population and 
are not selected, sampling rate changes are a possible 
explanation.

To conduct a more detailed analysis of the three 
categories of returns, I created another data item called 
Size.  This data item was determined by the size of total 
assets of the return.  Returns with less than $10,000,000 
in	total	assets	were	defined	as	“small,”	returns	with	be-
tween $10,000,000 and $249,999,999 in total assets 
“medium,” and returns with $250,000,000 or more in 
total assets “large.”  I then grouped each of the three 
“consistency” categories of returns into subgroups of 
small, medium, and large returns to analyze differences 
in	mean	financial	characteristics	and	mean	age	by	both	
consistency and size.

After segmenting returns based on both their con-
sistency and their size, it was observed that large re-
turns made up a considerably higher percentage of 
consistent returns than they did inconsistent or termi-
nal returns.  For consistent returns, 16.6 percent were 
large, whereas only 1.6 percent and 5.5 percent were 
large for Inconsistent and Terminal respectively.  Con-
versely, small returns tended to make up a much larger 
percentage of Inconsistent and Terminal returns, as is 
indicated	by	Figure	 I.	 	The	attrition	 rate	was	defined	
as the percentage of returns within each size catego-
ry—small, medium, and large—which was ultimately 
classified	as	Terminal.		Large	returns	had	the	lowest	at-
trition rate at 26.4 percent, followed by medium-sized 
returns, (36.4 percent).  Small returns had the highest 
attrition rate at 55.0 percent.  This may partially be due 
to	 the	 fluctuating	 sampling	 rates	 for	 smaller	 returns,	
but, since most nonselected returns were also not pres-
ent in the population, most of these taxpayers did not 
file	individually	[12].

Examining Figure I can provide insight into why 
the	averages	of	selected	financial	items	tend	to	be	much	
higher for Consistent returns than the other categories.  
The averages for Consistent returns are based on a much 

Figure F: Consistent Returns 

Variable N Mean Standard Deviation 

Total Receipts 37,744 $136,238,155 $1,498,106,574 

Net Income 37,744 $8,215,763 $96,288,521 

Total Assets 37,744 $304,742,101 $3,776,946,351 

Net Worth 37,744 $109,835,169 $902,754,411 

Age 37,744 19.4 21.0 

Figure G: Inconsistent Returns 

Variable N Mean Standard Deviation 

Total Receipts 9,459 $25,796,330 $238,476,363 

Net Income 9,459 $220,453 $14,196,113 

Total Assets 9,459 $37,207,485 $444,127,898 

Net Worth 9,459 $6,618,853 $70,868,775 

Age 9,459 14.8 16.6 

Figure H: Terminal Returns 

Variable N Mean Standard Deviation 

Total Receipts 39,926 $77,461,225 $814,956,006 

Net Income 39,926 $3,222,766 $58,191,247 

Total Assets 39,926 $205,827,618 $3,493,116,498 

Net Worth 39,926 $43,992,315 $583,865,566 

Age 39,926 15.7 19.6 

Figure E—By Type of Return

Figure F—Consistent Returns

Figure G—Inconsistent Returns

Figure H—Terminal Returns

Terminal
Inconsistent
Consistent
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higher proportion of large returns than are the other cat-
egories.		As	a	function	of	the	definition	of	large	returns,	
these	financial	items	will	tend	to	be	greater	on	returns	
with more assets, so that averages based on a higher 
proportion of large returns will be greater.  All means 
and	standard	deviations	of	financial	items	and	ages	by	
consistency and size are reported in the appendix.  

In addition to being on average larger in terms of 
these	selected	financial	items,	this	comparison	indicates	
that Consistent returns tend to be older than Inconsistent 
or	Terminal	returns.	 	Age	was	defined	in	years	as	 the	
base year (1993) minus the year of incorporation.  The 
average age of returns consistently in the SOI study is 
19.7 years.  The average ages of both Inconsistent and 
Terminal returns are lower at 14.6 years and 15.9 years, 
respectively.  With most of the base-year returns miss-
ing from the SOI study also missing from the popula-
tion	of	1120	filers,	the	analysis	indicates	that,	on	aver-
age, business entities that were older in the base year 
tended to survive longer [13].  Younger returns were 
more likely to be Inconsistent or Terminal.  A graphical 
comparison of mean ages is shown in Figure N.

Of particular interest is the difference in mean ages 
of large Consistent, Inconsistent, and Terminal returns.  
The mean age of large Consistent returns is 20.6 years, 
while the mean ages of large Inconsistent and Termi-
nal returns are 22.4 years and 24.8 years, respectively.  
The difference between large Consistent and large In-
consistent	returns	is	not	statistically	significant,	but	the	
difference between large Consistent and large Terminal 

returns	is	significant	at	the	99-percent	level.		Although	
returns of all sizes exhibit higher mean ages for Con-
sistent returns than for Inconsistent or Terminal returns, 
breakouts by size showed that large Consistent returns 
were younger on average than large Terminal returns.

u Conclusions and Further Research

The analysis showed that the majority of base-year 
returns which left the SOI sample also left the popula-
tion	of	1120	filers,	indicating	that	the	SOI	sample	se-
lects the same entities from year to year when those 
entities are available in the population.  Therefore, 
even though a small number of returns exited the SOI 
study due to changes in sampling rates, the conclusions 
drawn from analysis of the SOI studies largely apply to 
the	population	of	1120	filers	as	well	as	to	the	sample.	
After analyzing 10 years of data from SOI samples and 
10 years of population data from IRS Business Master 
Files, 41.7 percent of the base-year returns were shown 
to be present in the latest SOI study and 49.0 percent of 
base-year	returns	present	in	the	filing	population.		With	
the lowest attrition rate of all groups, large business en-
tities are more likely than smaller business entities to 
remain	in	the	SOI	sample	and	in	the	filing	population.		
The	group	of	returns	defined	as	Consistent	exhibited	a	
larger proportion of returns with $250,000,000 or more 
in total assets than the other two categories of returns, 
and large returns made up the smallest proportion of 
Terminal returns at 5.5 percent.  The surviving busi-
ness entities also tended to be older on average than 
business entities that fell out of the population or were 

 Consistent Inconsistent Terminal Attrition Rate 

Small 19,041 (50.4%) 6,959 (73.6%) 25,479 (63.8%) 49.5% 

Medium 14,719 (39.0%) 2,322 (24.5%) 11,789 (29.5%) 40.9% 

Large 3,984 (10.6%) 178 (1.9%) 2,658 (6.7%) 39.0% 
Small returns are those with less than $10,000,000 in assets, Medium with $10,000,000 to $249,999,999 in assets, and Large with

$250,000,000 or more. 

Percentages following counts indicate the percentage of the total count for the group of Consistent, Inconsistent, or Terminal.

Attrition rate is the percentage of the total number of base-year returns in this size category which were categorized as Terminal

returns.

Figure I—Return Counts by Size and Consistency with Attrition Rate
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not selected for SOI studies.  This relationship was not 
true for the group of large returns however, where Con-
sistent returns were slightly younger on average than 
Terminal returns.

The next steps in corporation life cycle research 
will	be	to	define	specific	reasons	for	attrition	from	the	
SOI sample and population and to more fully explain 
attrition based on these reasons.  This research should 
include the assembly of corporate family structures ca-
pable of accounting for previously individual returns 
which become part of consolidated groups.  A predic-
tive	model	could	be	implemented	to	determine	if	finan-
cial relationships are predictive of presence in the SOI 
sample or population.
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u Endnotes

 [1] For a complete history of sampling rates for all 
sizes and form types, see SOI’s annual Publica-
tion 16, Corporation Income Tax Returns.

 [2] For an explanation of critical returns, see SOI’s 
annual Publication 16, Corporation Income Tax 
Returns.

 [3] For a more detailed description of SOI’s sam-
pling process and studies, see the most recent 
version of SOI’s annual Publication 16, Corpo-
ration Income Tax Returns.

 [4] For datasets where the returns were not present 
in the SOI sample, the data items were populated 
with values from the most recent SOI study in 
which the returns were available.

 [5] A return that was missing from the population in 
2002 and 2003 would qualify as Consistent if it 
was present in all earlier years because the sum 
of all presence observations would total eight.  
A	classification	of	Terminal	is	more	desirable	
because the return is not present for the latest 2 
years and will presumably not return.

	 [6]	 SOI	maintains	a	file	of	return	transaction	data	
extracted	annually	from	the	BMF.		This	file	
contains a code that indicates whether an 1120 
return was processed on the BMF for a given 
EIN at any time in the Processing Year, roughly 
equivalent	to	a	Calendar	Year.		The	file	also	con-
tains a tax period indicating the year to which 
the transaction relates.

	 [7]	 The	entity	formerly	filing	its	own	1120	return	
may no longer do so because it is included in the 

consolidated	filing	of	another	return	or	group	of	
returns with a different EIN.

	 [8]	 For	SOI’s	definition	of	financial	items,	see	Pub-
lication 16, Corporation Income Tax Returns.

 [9] Age was calculated and carried through the 
analysis as of the base year rather than recom-
puted each year because increasing appearances 
in SOI studies would correlate directly with 
increasing age.

[10] For descriptions and counts of unavailable 
returns, see SOI’s Publication 16, Corporation 
Income Tax Returns.

[11] The sum of Consistent, Inconsistent, and Ter-
minal returns does not equal the total of the 
base-year returns due to legitimate “duplicate” 
records.  Duplicate records can be present in one 
study when part-year returns are selected in ad-
dition to full-year returns.

[12]	 These	entities	may	be	filing	a	non-1120	type	
return or may be included in the consolidation of 
another return or group of returns.

[13]	 Entities	counted	as	not	surviving	may	be	filing	
a non-1120 type return or may be included in 
the consolidation of another return or group of 
returns.
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Consistent Returns 
Size Data Item Mean Standard Deviation 

Small Total Receipts [1] $6,371,580.79 $57,384,713.78 

 Net Income $120,879.88 $4,079,558.5 

 Total Assets $1,807,835.87 $2,312,005.37 

 Net Worth $639,986.34 $ 4,270,068.29 

 Age 16.4479282 16.6014683 

Medium Total Receipts $53,895,910.61 $106,779,628 

Net Income $2,511,693.13 $7,407,540.48 

Total Assets $69,825,074.13 $57,974,136.63 

Net Worth $29,494,265.47 $44,890,136.91 

Age 22.7388410 24.0182814 

Large Total Receipts [2,3] $1,061,133,974 $4,499,784,062 

 Net Income [4] $67,978,026.03 $289,082,191 

 Total Assets [2,3] $2,620,483,834 $11,364,833,471 

 Net Worth $928,540,800 $2,638,900,731 

 Age [2] 21.5155622 25.4626241 

Inconsistent Returns 
Size Data Item Mean Standard Deviation 

Small Total Receipts [5] $4,077,602.06 $15,518,169.88 

 Net Income [5] -$34,503.10 $1,936,312.34 

 Total Assets $1,479,486.82 $2,162,763.78 

 Net Worth [5] $200,645.81 $4,779,648.44 

 Age [5] 13.2152608 14.5542741 

Medium Total Receipts $41,511,957.43 $79,428,394.05 

Net Income $-598,765.04 $13,179,286.11 

Total Assets $43,880,737.74 $44,024,985.24 

Net Worth $8,721,769.96 $62,242,205.94 

Age [6] 18.8165375 20.1862701 

Large Total Receipts [5] $669,891,521 $1,583,578,000 

 Net Income [5] $20,874,759.10 $88,900,726.62 

 Total Assets [5] $1,346,959,444 $2,956,099,587 

 Net Worth [5] $230,109,460 $405,911,755 

 Age [5] 24.9157303 25.7444784 

u Appendix

Footnotes at end of table.
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Terminal Returns 
Size Data Item Mean Standard Deviation 

Small Total Receipts $4,952,880.42 $70,038,460.90 

 Net Income -$71,616.51 $6,520,985.17 

 Total Assets $1,382,087.57 $2,069,756.45 

 Net Worth $133,487.37 $5,351,577.13 

 Age 12.9184034 14.8322453 

Medium Total Receipts $47,605,901.58 $95,661,811.13 

Net Income $1,147,350.28 $9,267,561.22 

Total Assets $67,945,915.83 $57,212,181.19 

Net Worth $17,690,263.35 $59,872,085.44 

Age 20.0385105 24.1205414 

Large Total Receipts $904,927,191  $3,025,364,570 

 Net Income $44,007,051.15 $219,787,529 

 Total Assets $2,777,142,544 $13,275,372,904 

 Net Worth $580,019,080 $2,190,282,973 

 Age 23.2558315 29.4368933 

u Appendix—Continued

Difference	across	means	statistically	significant	at	the	99-percent	level	unless	otherwise	noted.
[1]	Difference	between	Consistent	and	Terminal	statistically	significant	only	at	the	97-percent	level.
[2]	Difference	between	Consistent	and	Inconsistent	not	statistically	significant.
[3]	Difference	between	Consistent	and	Terminal	not	statistically	significant.
[4]	Difference	between	Consistent	and	Inconsistent	statistically	significant	only	at	the	97-percent	level.
[5]	Difference	between	Inconsistent	and	Terminal	not	statistically	significant.
[6] Difference between Inconsistent and Terminal statistically only at the 97-percent level.
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An Analysis of the Free File Program
Michelle S. Chu and Melissa M. Kovalick, Internal Revenue Service

T he Restructuring and Reform Act of 1998 (RRA 
1998) stated that the Internal Revenue Service 
(IRS) should set goals to have at least 80 percent 

of	all	Federal	tax	and	information	returns	filed	electroni-
cally	by	2007.		There	are	many	benefits	of	electronically	
filing	tax	returns;	tax	law	compliance	is	improved,	the	
IRS reduces operating costs by reducing the need for 
human inputs to transcribe data, and transcription errors 
are eliminated.

The	electronic	file	(e-file)	program	began	in	1986.		
During	the	2006	filing	season,	an	estimated	total	of	83.1	
million tax	returns	were	filed	electronically	(IRS	Docu-
ment 6186), including individual income, corporate, 
partnership, excise, and exempt organization tax returns.  
About 73.0 million individual income tax returns were 
e-filed	during	the	2006	filing	season.		

While	many	factors	affect	the	growth	of	the	e-file	
program, this paper focuses on the Free File Program, 
which provides taxpayers with access to free online tax 
preparation	and	e-filing	services.		Although	data	on	the	
Free File Program is limited, this paper will present a de-
mographic overview of Free Filers.  In addition, an over-
view and analysis of the Program will be provided.    

Overview and History of the Free   
 File Program

The Free File Program was developed in response 
to President Bush’s E-Government initiative and the 
Office	of	Management	and	Budget’s	EZ	Tax	Filing	Ini-
tiative,	with	the	assumption	that	providing	free	e-filing	
services to the majority of taxpayers would help meet 
the	80-percent	e-file	 target	established	by	RRA	1998.		
Although	some	private	sector	firms	offered	free	e-file	
services to limited groups of taxpayers in the past, the 
Free File Program marked an innovative approach by 
making free services consistently available to the major-
ity of taxpayers on a multiyear basis.  

u

One question that arose during the development of 
the Free File Program was why the Federal Government 
would partner with private industry instead of creat-
ing	its	own	software	for	free-file	purposes.		When	the	
Department of the Treasury announced new efforts to 
expand	 the	e-file	program	in	January	2002,	Secretary	
Paul O’Neill asked then-IRS Commissioner Charles 
Rossotti to partner with the private sector.  O’Neill 
stated that it was not his intent “for the IRS to get into 
the software business, but rather to open a constructive 
dialogue with those who already have established ex-
pertise	in	this	field.		In	the	end,	this	effort	should	come	
up with a better way to save time and money for both 
taxpayers	and	the	Government”	(Office	of	Public	Affairs,	
PO-964).  Since software companies had already proven 
their knowledge in the area of electronic tax services, 
working with private industry has several advantages.  It 
encourages competition, gives taxpayers more choices, 
and reduces costs to the American public.

Benefits and Objectives of the   
 Free File Program

The Free File Program has four main objectives: 
to	increase	e-file	penetration,	provide	more	free	online	
options	to	taxpayers,	ease	tax	preparation	and	filing,	and	
provide	greater	access	to	taxpayers.		The	e-file	option	
offers	 the	advantages	of	reduced	burden	on	filers	and	
quicker refunds, and the Free File Program exposes these 
benefits	to	taxpayers	who	may	have	previously	prepared	
and	filed	paper	returns.		In	addition,	promoting	the	Free	
File Program on the IRS Web site might alleviate taxpay-
ers’	concerns	about	the	security	of	the	e-file	process.		

On October 30, 2002, the original Free Online 
Electronic Tax Filing Agreement was signed by the IRS 
Commissioner and the Manager of the Free File Alliance, 
LLC.  The Free File Alliance is a group of software 
companies who provide free commercial online tax 
preparation	and	e-filing	services.		The	agreement	had	an	

u
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initial term of 3 years, followed by automatic options to 
renew for successive 2-year periods.   When this agree-
ment expired, a revised agreement was signed which 
extended the terms from October 30, 2005, through 
October 30, 2009.  

As of October 2006, analysis of the Free File Pro-
gram is limited due to the availability of data.  Although 
the program has been in existence for 4 years, in the 
initial years, data related to Free-Filed returns were the 
property of members of the Free File Alliance, not the 
IRS.		The	IRS	did	not	begin	to	identify	free-filed	returns	
until the 2006 Filing Season (Tax Year 2005).  Limited 
quantitative data from prior years is available via survey 
results from studies conducted by Russell Marketing 
Research and Foote, Cone, and Belding, and volumes 
of	free	filers	provided	by	the	software	companies.		How-
ever, use of this data is restricted for proprietary reasons.  
Another	constraint	is	that	complete	filing	season	results	
for 2006 were not available at the time this paper was 
written.  The deadline for Form 4868, Application for 
Automatic Extension of Time To File U.S. Individual 
Income Tax Return, to	be	filed	was	October	16,	2006,	
and the data used in this analysis were current as of 
September 26, 2006.

The Free Online Electronic Tax   
 Filing Agreements

The initial agreement between the IRS and the Alli-
ance was executed on October 30, 2002.  The arrange-
ment covers a wide array of topics such as performance 
standards, scope of marketing efforts, terms of termi-
nating the agreement, and the operation of the Alliance 
Web	page.		The	contract	specifies	that,	in	total,	Alliance	
members	must	provide	the	free	e-filing	option	to	at	least	
60 percent of all individual income taxpayers during the 
primary	tax	filing	season	(January	through	April).		If	the	
Alliance fails to reach the 60-percent coverage, the group 
must raise the coverage within a 6-month period.  In ad-
dition, each individual Alliance member must provide 
this free service to cover at least 10 percent of the total 
individual	income	tax	returns	filed.		

The agreement also addresses disclosure issues, 
privacy, and security provisions.  In order to ensure sat-

u

isfactory level of quality, the members were required to 
submit	test	returns	for	certification	prior	to	being	identi-
fied	as	members	of	the	Alliance	on	the	Web	page.		In	
addition, all members must have a security and privacy 
seal	certificate	from	a	third	party.		The	certification	pro-
cess was based on an assessment of the member system’s 
ability to protect taxpayer data and privacy concerns.

The	 agreement	 also	 specifies	 the	 guidelines	 for	
operating the Alliance Web Page on the IRS site.  The 
IRS will host and maintain the Web page, but the Al-
liance	will	determine	the	final	content	of	the	Web	site.		
This includes determining the rank order placement of 
the links to individual offerings, presence of a link to 
the free services, and prohibition of advertisements on 
the	Free	File	Web	page.		The	IRS	must	be	notified	if	an	
offering will be unavailable for 5 hours or more, and 
IRS has the authority to delist a member if its service 
remains unavailable for more than 24 hours.

Marketing issues are explored in the agreement.  
Although the IRS will promote the availability of the 
free	services,	it	will	not	specifically	endorse	products.		
The IRS and the Alliance will also explore ways to 
support	Federal/State	filing	of	returns	through	the	Free	
File	Program.		The	option	of	IRS	offering	free	e-filing	
services	also	remains	open.		If	the	IRS	notifies	the	Alli-
ance	of	this	decision	to	offer	free	e-filing	services	during	
the	primary	filing	season,	the	Alliance	may	terminate	the	
agreement effective April 16.  

After	three	successful	filing	seasons,	the	agreement	
between the IRS and the Alliance was extended for an 
additional period of 4 years (October 30, 2005, through 
2009) with amendments stemming from lessons learned 
from	the	first	agreement.		The	new	agreement	specified	
an aggregate coverage of 70 percent of taxpayers.  The 
volume of taxpayers eligible to use the free service 
would	change	each	filing	season.		In	the	first	year	of	the	
new agreement, Filing Season 2006, some 93 million 
taxpayers	qualified	to	use	the	service.		The	IRS	will	use	
the most current Adjusted Gross Income (AGI) number 
that equates to 70 percent of all individual income tax-
payers.  However, no single alliance member can cover 
more than 50 percent of total taxpayers.  Also new to the 
agreement was the introduction of Form 4868.  
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A number of amendments to the program content 
were	included	in	the	new	agreement.		The	first	topic	ad-
dressed Refund Anticipation Loans (RALs).  Although 
less than 1 percent of the 2.8 million Free File users in 
Tax Year (TY) 2002 opted for RALs, this was one of the 
key issues addressed in the new agreement.  Both par-
ties agreed that RALs may be offered by the members 
under several guidelines.  The offer of free online service 
cannot be conditional on the purchase of a RAL.  The 
language must clearly indicate that a RAL is a short-term 
loan and must be repaid within a certain time, indepen-
dent of the refund issued by IRS.  All fees and interest 
rates associated with RALs must be disclosed.  Finally, 
RALs	cannot	be	promoted,	and	some	Alliance	firms	will	
not offer RAL products, thus ensuring that consumers 
have RAL-free options.

During	the	first	3	years	of	the	program,	IRS	relied	on	
the Alliance members to provide the number of returns 
that were Free Filed through their respective offers.  One 
of the amendments included an agreement that the Al-
liance members would provide an electronic Free File 
indicator.		In	return,	the	IRS	confirmed	that	they	will	not	
build	a	marketing	database	or	compile	company-specific	
proprietary data.  Although the IRS cannot refuse to 
comply with requests from Governmental agencies and 
Congress, the IRS will promptly notify the Executive 
Director of the Alliance if this information is provided.  
The Alliance members will then have the option to cease 
providing the indicator.  Also, amendments addressed 
Web site compliance measures and customer satisfac-
tion surveys.  The performance standard was placed at 
a 60-percent acceptance rate, and additional privacy and 
security issues were addressed.  

Free File Volumes

The unprecedented alliance between the IRS and the 
private	sector	to	offer	free	e-filing	services	met	with	suc-
cess	from	the	start.		In	the	first	year	of	the	program	(Fil-
ing	Season	2003),	2.8	million	returns	were	filed	through	
the 17-member Alliance.  The second year resulted in a 
more than 26-percent increase, with 3.5 million returns 
filed	through	the	17-member	Alliance.		The	third	and	the	
most	recent	filing	years	resulted	in	5.1	million	Free	Filed	
returns (a 46-percent increase) in TY 2004 and almost 
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4.0 million returns (a 22-percent decrease) in TY 2005 
from the 20-member Alliance.  

The	initial	agreement	specified	a	minimum	coverage	
of	60	percent,	which	the	members	abided	by	in	the	first	
two	filing	seasons.		In	the	third	year	of	the	program,	one	
of the Alliance members decided to offer the free prepa-
ration	and	filing	service	to	all	taxpayers	(TIGTA	2006-
40-171).  Other members followed, and, in TY 2004, 
all 100 percent of taxpayers had the option to Free File.  
This was the main contributing factor to the 46-percent 
increase in Free-Filed returns in Filing Season 2005.  
This caused some friction among the Alliance members, 
and the existence of the Alliance was threatened.  Hence, 
one of the amendments included in the new agreement 
includes the stipulation that no single member can offer 
more	 than	50-percent	coverage.	 	Since	 the	past	filing	
season	represents	the	first	year	the	IRS	started	identify-
ing the Free-Filed returns, the consistency of prior-year 
data	cannot	be	verified	for	accuracy.		

Projections of Free File volumes produced by the 
IRS indicate that almost 5.0 million returns are expected 
to be Free Filed in TY 2006.  This represents a 25-percent 
increase	from	the	TY	2005	filing	season.		The	volume	is	
expected to reach almost 6.0 million by TY 2009.  

Weekly Trends

Although	Free	Filers	reflect	the	early	filing	patterns	
of	 the	 overall	 e-filers,	 calculation	 of	 the	 cumulative	
weekly	filing	percentages	show	that	the	Free	Filers	gen-
erally	filed	even	earlier	in	the	filing	season	compared	to	
the	total	electronically-filed	returns.		The	comparisons	
are	based	on	the	TY	2005	filing	results.		By	the	end	of	
January,	9	percent	of	Free	Filed	returns	had	been	filed	
compared	to	less	than	8	percent	of	total	e-filed	returns.		
However, the difference increased to over 7 percent in 
early February and another percentage towards the end 
of the month.  More than half of the Free Filed returns 
(56 percent) were received by the end of February, versus 
48	percent	of	total	e-filed	returns.		The	gap	continues	to	
range from 3 percent to almost 8 percent until the end of 
the	primary	filing	season.		By	April	20,	approximately	
97 percent of Free Filed returns, and 95 percent of total 
e-file	returns,	were	filed.		

u
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TY 2005 Cumulative Weekly Filing Percentages

Source: Electronic Tax Administration Data

Tax Year 2004 Demographics

In order to gather more information about Free File 
Program users, the Electronic Tax Administration within 
the IRS contracted with Russell Marketing Research and 
Foote, Cone, and Belding to implement an online survey 
of taxpayers who Free Filed their TY 2004 individual 
returns.  The purpose of the survey was to obtain results 
which would be used to further develop marketing cam-
paigns for the Free File Program.  Each eight-hundredth 
Free Filer was asked to complete the online survey.  The 
contractors collected the results which were summarized 
by research teams within IRS’s Wage and Investment 
Division (W&I Research Project 6-05-08-2-038N).  

Although these results provide an overview of Free 
Filers, they must be interpreted with caution.  Participa-
tion in the survey was voluntary, and many taxpayers 
opted not to complete the questionnaire, leading to an 
estimated response rate of 2 percent.  Thirteen of the 20 
Free File Alliance members offered the online survey.  In 
addition, not all of the participating companies offered 
the	survey	at	the	start	of	the	filing	season,	and	some	com-
panies did not initially follow the skip pattern (offering 
the survey to the 800th	filers).		However,	by	February	14,	
all 13 Alliance members who participated in the survey 
were offering it according to the agreed-upon pattern.  
For the purposes of this paper, only those surveys col-
lected after February 14 are included in the analysis.  
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According to survey results, 17 percent of taxpayers 
who	Free	Filed	 in	Filing	Season	2005	were	first-time	
filers.		Of	the	remaining	83	percent	who	had	previously	
filed	Federal	income	taxes,	29	percent	were	e-filing	for	
the	first	time.		Some	78	percent	of	this	group	of	prior	
paper	filers	 self-prepared	 their	 tax	 returns	 during	 the	
previous	filing	season.		Of	the	approximately	70	percent	
of	respondents	who	had	used	e-file	methods	during	the	
prior	filing	season,	only	2	percent	claimed	to	have	used	
the TeleFile Program.  About 41 percent used tax prepa-
ration	software,	and	15	percent	e-filed	via	tax	preparers.		
The remaining 42 percent stated that they used Free File 
in the previous year.  When questioned about previous 
use of Free File, 51 percent had used the program in 
prior years; about 49 percent of those surveyed were 
first-time	Free	Filers.		

Based on survey responses, Free File participants 
share certain demographic characteristics.  Over half (52 
percent)	claimed	a	single	filing	status.			Some	32	percent	
were	married	filing	jointly,	and	14	percent	filed	as	heads	
of	households.		The	remaining	2	percent	were	married	fil-
ing separately or qualifying widows.  Some 50 percent of 
Free Filers were 35 years or younger.  About 42 percent 
had a pretax income of less than $25,000, and 56 percent 
reported a pretax income of less than $35,000.  About 16 
percent of survey responders reported that they claimed 
the Earned Income Tax Credit on their 2004 Federal 
income tax returns.  Almost 90 percent of respondents 
were owed a refund in Filing Season 2005.

Respondents were also asked about their future plans 
to	e-file	tax	returns.		Some	75	percent	stated	that	they	
would	use	e-file	again	in	the	future,	and	an	additional	
21	percent	expressed	that	they	would	be	likely	to	e-file	
future returns.  Only 1 percent indicated that they would 
either	file	(or	probably	file)	a	paper	return	in	upcoming	
filing	seasons.

When asked about how they heard about the Free 
File Program, responses covered a range of topics.  Com-
munication from the IRS was the most likely source for 
hearing about Free File; some 49 percent of respondents 
heard about the program from either information on 
the	IRS	Web	site,	tax	forms,	or	IRS	mailings.		Specific	

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%
10.00%

0.00% Jan 5
Jan 12

Jan 19

Jan 26

Feb 2
Feb 9

Feb 16

Feb 23

Mar 2
Mar 9

Mar 16

Mar 23

Mar 30

Apr 6
Apr 13

Apr 20

Total E-file Free File



- 119 -

an analySiS of tHe free file Program

responses indicated that 35 percent learned about the 
program from the IRS Web site, and 22 percent heard 
about it from relatives or colleagues.  

TY 2005 Demographics of Free Filers

Analysis of TY 2005 Free Filed returns (which was 
the	first	year	Free	File	data	were	flagged	by	the	IRS)	
illustrated several interesting characteristics of Free Fil-
ers.  The data showed that Free Filers are mostly in their 
twenties	with	a	single	filing	status	and	have	relatively	
low AGIs.  Most received refunds.  About 47 percent of 
Free Filers were between the ages of 20 to 29, and an 
additional 12 percent were between the ages of 16 and 
19.  Some 73 percent of Free Filed returns indicated 
Single	filing	 status,	while	 15	percent	 of	 returns	were	
Head of Household, and 11 percent were Married Filing 
Jointly.  Over half of the returns had AGI of less than 
$17,000, while 19 percent had an AGI greater than or 
equal to $17,000 but less than $25,000, and 17 percent 
had an AGI greater than $24,999 but less than $35,000.  
Of the 3.8 million Free Filed returns, 96 percent were 
refund returns with an average refund amount of $1,300.  
This	compares	to	88	percent	of	total	e-filed	returns	(IRS	
Document 6187) which were estimated to be refund re-
turns.  The data indicated that 34 percent of the returns 
were the long and more complicated form type (Form 
1040).  The short form, Form 1040EZ, constituted an 
additional 38 percent of the returns.  Around 5 percent 
of	total	electronically-filed	individual	returns	were	filed	
through the Free File Program.  

An	analysis	of	how	TY	2005	Free	Filers	filed	their	
tax returns in the previous year (TY 2004) showed that 
the Free File Program is contributing to the growth of 
the	overall	 e-file	program.	 	As	 expected,	not	 all	Free	
Filers	are	first	time	e-filers.		About	66	percent	electroni-
cally-filed	their	returns	in	TY	2004.		Some	39	percent	
of	these	filed	online,	while	17	percent	used	the	TeleFile	
Program,	and	the	remaining	10	percent	e-filed	via	prac-
titioners.  However, 17 percent of TY 2005 Free Filers 
had	paper-filed	their	tax	returns	in	TY	2004.		Further-
more, almost 42 percent of this population (TY 2004 
paper	filers)	had	V-Coded	 their	 returns,	meaning	 that	
they prepared their returns on the computer but printed 
the returns and mailed them in as paper returns.  In ad-
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dition, about 18 percent of current Free Filers are new 
filers	who	did	not	file	a	return	in	TY	2004,	indicating	
that the Free File Program is attracting new taxpayers 
to	the	e-file	program.		

State Level Data and Participation 
 Rates—Tax Year 2005

An analysis of State-level data (including the District 
of Columbia) yielded several interesting patterns in terms 
of Free Filers during the 2006 Filing Season.  Although 
these	results	are	based	on	one	filing	season,	future	stud-
ies may result in more conclusive relationships among 
demographic variables and participation in the program.  
To calculate the Free File participation rate (FFPR) per 
State, a ratio was calculated based on each State’s number 
of Free Filed returns as a percentage of that State’s total 
return volume (including paper and electronic volumes).  
The FFPR for the U.S. was 1.30 percent in TY 2005, 
with State levels ranging from 4.40 percent in Ohio to 
1.64 percent in New York.  The average state FFPR was 
3.15 percent.  The 10 States with the highest FFPR were 
Ohio, South Dakota, Wisconsin, Maine, West Virginia, 
Nebraska, Utah, Oklahoma, Idaho, and North Dakota.  
These States represent a broad range of geographic loca-
tions, State sizes, and total populations.  

Using age and population data from Global Insight, 
Inc., it was determined that 3 of the 10 States with the 
highest FFPRs—Utah, Idaho, and North Dakota—also 
ranked in the 10 U.S. States with the highest ratio of resi-
dents in the “15-to-34-year-old” age range.  This range 
includes teenagers and those entering the workforce for 
the	first	time	who	would	be	likely	to	have	lower	incomes	
and meet the AGI limit.

State-level per capita income was also analyzed to 
determine if States with lower per capita incomes had 
higher FFPRs.  West Virginia, Utah, and Idaho were 
within the 10 states having the lowest per capita incomes, 
which may indicate that States with lower incomes 
have more participation in the program, particularly if 
the States (like Utah and Idaho) also have a high per-
centage of younger residents.  States with the lowest 
FFPRs tended to have higher per capita income levels.  
The 6 States with the highest per capita incomes were 

u
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the District of Columbia, Connecticut, Massachusetts, 
New Jersey, Maryland, and New York.  With the excep-
tion of Massachusetts, the other States with higher per 
capita incomes were skewed toward having the lowest 
FFPRs.  The District of Columbia was 37th, and the 
other 4 high-income States ranked in the bottom 10 in 
terms of FFPR, with New Jersey and New York having 
the lowest participation rates of all States.  

Tax Year 2005 Survey Results—Free 
 Filer Attitudes

For TY 2005, the IRS again contracted with Russell 
Marketing Research to conduct telephone interviews 
of Free Filers.  The sample consisted of 1,800 Free Fil-
ers who were selected from lists provided by the IRS.  
Although this survey yielded some demographic data 
similar	to	the	survey	efforts	of	the	prior	filing	season,	
the objectives were to determine the overall usage and 
perception of Free File, the usage and evaluation of 
specific	site	features,	and	other	learning	experiences.

Data collected regarding the overall usage and 
perception of the Free File Program was highly favor-
able; some 94 percent of respondents indicated that they 
would like to use the program again, while 97 percent 
said they would recommend the program to friends or 
family.  In terms of improving the program, 30 percent of 
respondents had suggestions for improvement.  Among 
the feedback offered was making Free File easier to 
use (7 percent), increasing awareness of the program 
(4 percent), removing the income criteria (4 percent), 
and providing more information on the tax preparation 
companies (4 percent).  

In terms of ease of using Free File, 60 percent of 
those surveyed rated the experience as very easy, and 
34 percent rated it as somewhat easy.  About 1 percent 
responded	that	the	experience	was	very	difficult.		Free	
Filers who used step-by-step instructions, the frequently 
asked questions guide, and the “Guide Me to A Service” 
feature rated the program as easier to use than those 
who contacted the Help Desk for assistance.  Among 
those who felt that the Free File Program Web site and 
pages could be improved (18 percent of respondents), 25 
percent indicated that the pages should be easier to use 

u

and the company selection process could be improved.  
About	82	percent	were	satisfied	with	the	Free	File	pages	
and did not think the pages could be improved.  

Early	surveys	of	taxpayers’	attitudes	toward	e-file	
indicated some level of concern about the security of 
online transactions with the IRS (RMR March 2003).  
However, over half of the respondents (54 percent) felt 
very	confident	that	the	information	they	provided	during	
the Free File process was secure; 42 percent indicated 
that	they	were	somewhat	confident.		Although	the	ma-
jority of responses were highly favorable, increasing 
the	level	of	confidence	in	the	security	of	the	Free	File	
process represents an area that the IRS and the Alliance 
can work to improve in the future.  

In terms of deciding which provider to use, no one 
factor appears to dominate the decisionmaking process.  
Some 21 percent based their decisions on a software 
company they had used in the past, while 19 percent 
used a company recommended by family or friends, 
and 14 percent based their decisions on the criterion that 
the company’s “offer met my needs.” Only 11 percent 
of respondents based their decisions on the company’s 
reputation.  Those using the “Guide Me to A Service” 
feature were far more likely to indicate that the decid-
ing factor in selecting a company was the fact that the 
company was suggested by this IRS-provided feature.  
Some 55 percent responded that they would use the same 
tax provider next year, and 36 percent said that they 
would probably use the same company again.  Only 1 
percent	said	that	they	would	definitely	not	use	the	same	
company again.  

Survey results for Filing Season 2006 indicated that 
more Free Filers learned about the program from family 
or colleagues (over one-third gave this response) than 
in Filing Season 2005.  About 40 percent cited the IRS 
as their initial source of information about Free File, a 
drop from the almost 50 percent who gave this response 
in the Filing Season 2005 survey.  Although 89 percent 
felt that the initial information they received provided 
sufficient	knowledge	of	 the	program,	only	49	percent	
stated that their initial source mentioned the income 
limit of $50,000 for using the Program.  
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in Filing Season 2005 came in through the Free File 
Program during Filing Season 2006.  This represents 
almost 20 percent of the total TeleFile returns from Fil-
ing Season 2005.  

Since its inception, the Free File Program continues 
to evolve and make valuable contributions to the e-File 
Program while reducing taxpayer burden.  It offers an-
other	e-file	option	when	other	programs,	like	TeleFile,	
end.  As the program prepares to offer Forms 1040EZ-
T and Spanish language option, it continues to be an 
innovative	 arrangement	 benefiting	 taxpayers,	 private	
companies, and the IRS.  
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Standing Out in a Crowd:  Improving Customer Utility 
on a Centrally Administered, Shared Web Site*

Barry W. Johnson, Internal Revenue Service

T he Internet has become the primary public inter-
face for many statistical organizations, offering 
opportunities to reach larger audiences with more 

products than ever before.  Often, however, a statistical 
organization’s virtual existence must be shared with 
other, dissimilar organizations, due either to resource 
constraints or policy decisions.  In countries without a 
centralized statistical agency, such as the United States, 
statistical organizations are often housed within much 
larger agencies whose missions are primarily adminis-
trative.  In such cases, the needs of the statistical func-
tion are often at odds with those of the administrative 
function.  Similar tensions can exist in countries where 
the statistical functions are centralized.  In these cases, 
subject matter with a relatively small customer base 
may compete for visibility and resources with topics 
that have broader appeal.  Shared use of a single Web 
site	may	reduce	flexibility	in	design	and	limit	the	types	
of products that can be offered.  Often, design decisions 
are driven by the component with the largest customer 
base and may not optimally serve smaller statistical 
functions and their customers.

Statistics of Income (SOI), a division of the U.S. 
Internal Revenue Service (IRS) and the primary source 
of data on the U.S. tax system, provides an excellent 
case study for this sort of coexistence.  The irs.gov Web 
site	 is	designed	primarily	 to	 assist	 taxpayers	 in	filing	
their	 taxes.	 	 It	 contains	 tax	 forms,	filing	 instructions,	
regulatory rulings, and other resources for answering 
questions about the myriad tax and information report-
ing requirements that compose the U.S. tax system.  It 
is also home to SOI’s Web pages, “TaxStats,” which 
provide public access to more than 4,000 statistical 
data products and average almost 500,000 downloads 
per month.  This paper will focus on SOI’s efforts to 
improve the TaxStats pages on irs.gov.  It will discuss 
recent redesign efforts and share future plans, all in the 
context of working within the design limits imposed by 

a multiuse Web site.  The goal is to provide guidance 
and encouragement for other statistical organizations in 
similar situations.

u Background

The	official	public	IRS	Web	site,	irs.gov,	is	main-
tained by a contractor, under the supervision of two or-
ganizations within the Service.  The Communications 
and Liaison division (C&L) oversees the general look 
and feel of the Web site and maintains a set of detailed 
guidelines for page design, including approved fonts, 
colors, page formats, writing style, etc.  All Web pages 
and content posted to irs.gov must be created and mod-
ified	 through	 the	 Content	 Management	 Application	
(CMA).  This tool, through validation checks and the 
use of dropdown menus, helps ensure that all Web pag-
es	comply	with	the	parameters	specified	in	these	guide-
lines.  The IRS Electronic Tax Administration division 
(ETA) oversees the hardware and software aspects of 
irs.gov.  Jointly, these two divisions set standards, plan 
upgrades, conduct user-testing, and facilitate monthly 
meetings with irs.gov’s major content providers.

Statistics of Income began disseminating data 
electronically in 1992 via an electronic bulletin board, 
which was maintained on a personal computer by SOI 
staff.  In 1996, SOI replaced the bulletin board with 
the TaxStats pages on irs.gov.  These pages were or-
ganized	 by	 subject	 matter,	 primarily	 reflecting	 SOI’s	
internal structure.  Downloads and Web content grew 
annually, but, by 2003, it became clear that customers, 
particularly	 those	new	 to	TaxStats,	were	having	diffi-
cultly locating products and services.  To learn more 
about customer experiences on TaxStats and to address 
problems, SOI formed a small, cross-functional “Web 
team” made up of economists, statisticians, and com-
puter specialists from a diverse array of subject matter 
areas.
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u Gathering Feedback

Any organization with a Web presence needs to pe-
riodically measure how well it is serving its customer 
base.  For SOI, informal feedback provided a catalyst 
for evaluating the effectiveness of SOI’s Web pages.  
Initially, some of the most useful comments came from 
customers who contacted its Statistical Information 
Services	(SIS)	office	after	failing	to	find	the	informa-
tion they wanted on TaxStats.  Many times, SIS staff 
were able to help these customers navigate the TaxStats 
pages	to	find	the	information	they	sought,	a	clear	indi-
cation that the Web pages needed improvements.  In 
addition, SOI has a panel of expert tax policy research-
ers who meet biannually to offer feedback and provide 
direction to SOI.  These users not only provided ad-
ditional, informal feedback about their experiences us-
ing TaxStats, but also became an integral part of the 
redesign process.

To gather formal information from customers, SOI 
developed a survey that was given to all callers who 
contacted SOI’s SIS staff [1].  This survey included 
11 structured questions and an opportunity for general 
comments.  Questions included general respondent in-
formation (occupation, frequency of visits to TaxStats, 
subject matter interests), general satisfaction with Tax-
Stats (ease of use, quality of products, overall satisfac-
tion), and suggestions for improvements (expanded 
content,	preferred	file	formats,	specific	changes	to	im-
prove navigation).  In addition, the survey was adminis-
tered to the membership of the U.S. National Tax Asso-
ciation, whose participants are considered key users of 
SOI data, and to SOI’s consultants.  The results showed 
that SOI customers had a wide range of occupations 
but were mainly researchers from universities; Federal, 
State, or local government employees; or individuals 
providing consulting or issue advocacy services.  In 
general, customers found SOI products useful and of 
high	quality	but	often	had	difficulty	locating	items	on	
TaxStats.	 	They	specifically	cited	problems	with	Web	
page organization.  Other comments included requests 
for more data, especially historic data, and easier-to-
use product formats for data tables and articles [2].

In addition to formal and informal customer feed-
back, irs.gov provided SOI with monthly Web metrics 

that	 identified	popular	 products.	 	These	metrics	were	
also useful as benchmarks against which redesigned 
pages could be evaluated.  After analyzing data from 
all sources, it was clear that  both page and overall Web 
site design issues were contributing to user dissatisfac-
tion.  Page design problems were generally things that 
SOI could address directly.  Site design problems posed 
a greater challenge, since these necessitated work-
ing with irs.gov personnel to change the structure of          
irs.gov or modify style guidelines.

u Attacking the Problem

Having	confirmed	that	customers	were	having	dif-
ficulty	 finding	 information	 on	 the	 TaxStats	 pages	 of	
irs.gov, the next step was to identify products that SOI 
wanted to make available to the public via the Web.  
This was done through conducting a careful inventory 
of existing TaxStats content, brainstorming new product 
offerings, and researching the types of products avail-
able from other statistical functions in the U.S. and in 
other countries.  Customer feedback from the surveys 
was also very important to this process.  A few prime 
customers provided additional input by participating in 
a card sort exercise.

Card sorting, as applied to information management, 
is a technique for developing an information structure, 
as well as suggesting navigation, menus, and possible 
taxonomies [3].  SOI used its panel of 15 consultants 
as subjects for this exercise, which was conducted via 
mail [4].  Each test subject received a package consist-
ing of: 1) slips of paper, each with a single content item 
printed on it, 2) instructions, and 3) some blank slips of 
paper for subjects to write in additional content items.  
Participants were asked to create subgroups from items 
they perceived as related, by grouping individual cards 
using rubber bands and paper clips, and then to orga-
nize these subgroups into larger categories.  Partici-
pants then mailed the cards back to SOI, along with any 
comments or suggestions they wished to add.  While 
response rates were somewhat disappointing, the six 
subjects who chose to participate represented a range 
of research interests.  Despite their varied interests, the 
subjects provided results that were surprisingly simi-
lar.  Each also provided a number of suggestions for 
new content items.  The results of this exercise were 
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instrumental in developing the structure and content of 
a prototype for the new TaxStats Web pages.

Another important component of the redesign ef-
fort involved examining Web sites of major U.S. and 
international statistical agencies, as well as a number 
of commercial Web sites.  The team also reviewed ar-
ticles and research papers that presented guidelines for 
effective Web pages [5].  At the time, the recently rede-
signed U.S.  Bureau of Labor Statistics (BLS) Web site 
was particularly helpful, because it is an organization 
whose mission and scope are similar to those of SOI.  
Since BLS is renowned for its cognitive research, all 
its new Web pages were subject to extensive usability 
tests, the results of which are well documented in a se-
ries of papers on Web design and testing [6].  In ad-
dition, the BLS Web designers were very generous in 
sharing their expertise with SOI’s Web team.

u Developing a Plan

The	 official	 irs.gov	 design	 guidelines	 provided	
three basic page layouts at the time SOI undertook its 
redesign.  All Web pages contained static content, pri-
marily text in HyperText Markup Language (HTML) 
or documents in Portable Document Format (PDF).  As 
SOI Web team members developed new page layouts, 
a guiding factor was to keep, as much as possible, the 
specifics	 of	 the	 designs	within	 the	written	 guidelines	
established for irs.gov, but, within those guidelines, to 
be as innovative as possible.  Several new layouts were 
developed, and these were presented to SOI’s panel of 
consultants for feedback.  Based on their feedback, SOI 
developed a working prototype of the new site using 
Microsoft FrontPage.

While developing the prototype Web pages, SOI 
met with some of the individuals who oversee irs.gov.  
At this meeting, SOI presented research results and a 
detailed short- and long-term vision for TaxStats and 
unveiled a few prototype pages.  An important feature 
of this presentation was the use as examples of other 
successful Web pages from organizations with missions 
similar to that of SOI.  A few key factors made this 
meeting successful.  First, SOI had empirical research 
to show that the current irs.gov TaxStats pages were 
not serving customers well.  Second, SOI was careful 

to draw a distinction between customers who access tax 
statistics and those who came to irs.gov in search of tax 
filing	or	compliance	information.

Third, SOI acknowledged the value of design con-
straints that had been developed to enhance the expe-
riences of the latter group and provided evidence that 
these	very	 features	were	making	 it	difficult	 for	SOI’s	
customers	 to	find	 the	 products	 they	 needed.	 	 Finally,	
recognizing resource limitations, SOI chose to focus on 
a limited number of requests for changes in irs.gov poli-
cies or practices.  The results of this meeting included a 
clearer understanding of SOI’s needs, an agreement to 
make	a	significant	change	to	the	existing	irs.gov	page	
structure, and a promise for continued dialogue.

u User Testing

After developing a working prototype Web site, 
SOI conducted user-testing prior to implementing any 
actual changes to the TaxStats pages.  While the proto-
type did not have working links for all 4,000 SOI data 
products, it included examples of all the page styles 
that SOI was proposing, including several pages with 
similar functions, but different design features, in the 
hope that testing would indicate a clear “best” choice.  
After consulting with professional Web developers and 
SOI’s own staff of statisticians, a series of test tasks 
were developed.  Testing was conducted at the BLS 
cognitive research laboratory, and a trained facilitator 
administered these tasks individually to a diverse group 
of seven test subjects while members of the Web team 
observed from a separate room [7].  Observers were 
able to hear each of the test subject’s comments, as 
well as view their facial expressions and all computer 
key strokes via a computer monitor.  Each session was 
also captured on videotape for further analysis.  At the 
end of each test session, subjects were debriefed using 
a	questionnaire.		The	test	results	were	used	to	finalize	
Web design plans.

u Implementation

Once	 the	plan	was	finalized,	Web	 team	members	
set about the task of programming new Web pages.  
Hierarchies of pages were developed, and design attri-
butes,	such	as	font	sizes,	spacing,	text	justification,	grid	
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styles, and usage, etc., were determined and document-
ed in written guidelines that included instructions and 
examples to ensure uniformity across pages.  Actual 
programming was performed by individuals with some 
expertise in the subject matter whenever possible.  This 
ensured	that	specific	content	items	were	correctly	cat-
egorized	and	described.		To	assist	in	final	page	design,	
classroom training in writing for the Web was offered 
to team members.  Once all of the pages were complet-
ed, subject matter experts were enlisted to thoroughly 
test each page for accuracy.  In total, nearly 150 pages 
were developed with more than 4,000 links to content 
items.  The new pages included a new main (home) 
page and a redesigned left navigation bar.  Based on 
customer feedback, all tabulated data on the site were 
made available as Microsoft Excel spreadsheets, and 
all research reports were posted in PDF format, with 
free readers provided for each.  Web pages were nearly 
all	programmed	in	HTML	and	were	certified	as	compli-
ant with U.S. standards for accessibility by individuals 
with disabilities [8].

u Future Directions

SOI is currently working to improve several as-
pects of the TaxStats Web pages.  First, while all of the 
actual	TaxStats	Web	pages	are	certified	as	accessible	to	
individuals with disabilities using screenreading soft-
ware, many of the PDF documents available through 
those pages are not.  SOI is committed to correcting 
this problem by improving both the techniques used 
to create the documents and their overall design.  The 
software used to produce SOI documents has recently 
been upgraded, and SOI is seeking training and advice 
from desktop publishing experts.  

Second, many of the tables on TaxStats contain 
extra formatting features that are necessary for creat-
ing printed publications but that make certain types of 
analysis	difficult.		Customers	who	use	these	tables	for	
analysis	must	 first	 remove	 some	 formatting	 features	
before applying even simple math functions to the 
data.  SOI has just issued draft guidelines for produc-
ing researcher-friendly data tables.  These guidelines 
were developed by incorporating extensive feedback 
from customers.

Third, a prototype application that allows custom-
ers to create customized tables from SOI data is being 
tested on TaxStats.  This application uses off-the-shelf 
software with custom-designed display screens that 
allow users to access a database containing tabulated 
SOI data (microdata are not made available due to pri-
vacy protection concerns).  Users can combine data 
across different tax years, select variables of interest, 
and choose categories of data to include in a table, 
as well as calculate simple descriptive statistics using 
this application.

Fourth, metadata designed to help users better inter-
pret the data available on TaxStats are being developed.  
Possible metadata items include tax forms marked to 
indicate	 the	 origin	 of	 specific	 data	 items,	written	 de-
scriptions of individual data items, and sample selec-
tion information, including variance estimates where 
applicable.  Samples of metadata are currently being 
tested.  In addition, SOI is working closely with irs.
gov	officials	to	develop	a	fully	articulated	taxonomy	of	
TaxStats that, in time, will be used to improve search 
capabilities and navigation, as well as provide common 
definitions	of	concepts	and	terms	across	all	irs.gov	con-
tent areas.

u Lessons Learned

Statistics of Income’s experience in redesigning the 
TaxStats pages on irs.gov serves as a model for other 
organizations	faced	with	a	Web	site	that	is	not	specifi-
cally designed to serve its customers’ needs.  The re-
sulting redesigned Web pages, while not cutting-edge, 
nevertheless have garnered favorable feedback from 
both regular and new customers.  More products are 
now offered on clearer, better organized pages.  Prod-
uct formats have been standardized and, in some cases, 
redesigned.  The effort was not expensive.  In fact, the 
only direct expense was the cost of sponsoring a Web-
writing training class.  There were opportunity costs in 
the time spent on the redesign efforts by employees, 
but SOI’s Web team was careful not to let Web design 
activities interfere with their day-to-day responsibili-
ties.  And as is often the case, the team project brought 
energy	 to	SOI	 that	provided	benefits	beyond	 the	suc-
cessful	 completion	 of	 this	 specific	 task.	 	 The	 key	 to	
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SOI’s success was involving subject matter specialists 
and customers in all phases of transforming the Tax-
Stats pages.  This fostered a sense of commitment to 
the project, a deeper understanding of customer needs 
and SOI products, and the creativity needed to work 
within the constraints of a design framework that ini-
tially appeared to be fundamentally unsuitable.  Some 
specific	lessons	learned	include:

	 a.		 Gather	specific	feedback	from	users	in	order	to	
thoroughly understand opportunities for im-
provement.  If possible, involve a group of core 
customers in redesign efforts.

 b.  Research best practices used by organizations 
with similar products or customers.  Also  
examine commercial Web sites since these  
may	reflect	the	most	current	design	practices	 
and technology.

 c.  Focus initially on those things that are under  
the control of the content provider.  Consider 
questions such as:

 •  Are products being provided in formats 
that meet customer needs?

 •  Are products and pages accessible to all 
users?

 •  Is content organized and adequately de-
scribed so that users outside the provider’s 
culture can clearly understand what is 
being provided?

 d.  Take as much control over content management 
as possible.  Involve employees who are familiar 
with the mission and products of the organiza-
tion in redesign efforts.  Keep management 
informed of team progress and ideas to ensure 
executive-level support.  This is especially 
important if redesign plans require any site-level 
policy changes.

 e.  Develop a thorough understanding of design 
guidelines and restrictions, and, if possible,  

meet with Web site managers to better under-
stand them.

 f.  Present research results to Web site managers 
along with a clear plan for improvement that 
respects current Web site guidelines.  When nec-
essary,	propose	modifications	that	will	meet	the	
needs	of	specific	customer	groups,	focusing	on	a	
few essential changes.

 g.  Become involved in the Web site’s user group, or 
urge the formation of such a group if none exists.
These are excellent forums for educating Web 
site managers about customer needs.

 h. Prototype and test pages prior to implementing 
any changes.

 i.  Continuously monitor user experiences on the 
Web site.  Web pages are not static, but must  
continue to change as technology and Web  
practices evolve.

u Endnotes

 [1] While an online survey of TaxStats users would 
have been preferred, at the time of the redesign, 
irs.gov did not have the technical capacity to 
implement Web surveys.

 [2] Prior to the redesign, documents were available 
in PDF, Lotus, and Microsoft EXCEL.  In addi-
tion,	larger	files	were	compressed	and	provided	
as	executable	files.

 [3]  Maurer, Donna and Warfel, Todd, “Card Sorting:  
a	definitive	guide,”	http://www.boxesandarrows.
com/view/card_sorting_a_definitive_guide,	2004.		

 [4]  The minimum recommended number of card 
sort participants is 15.  While conducting this 
exercise face-to-face allows observers to record 
respondent reactions, it is acceptable to mail 
packages to participants when cost is an im-
portant consideration or when conducting the 
exercise via mail improves participation rates.  
Nielsen, Jakob, “Card Sorting:  How Many 
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Users To Test,” http://www.useit.com/alert-
box/20040719.html, 2004.

 [5]  See, for example, “Best Practices in Design-
ing Web Sites for Dissemination of Statistics,” 
United Nations Statistical Commission and 
Economic Commission for Europe, 2001. 

 [6]  See, for example, Levi, Michael D., “Usabil-
ity Testing Web Sites at the Bureau of Labor 
Statistics,” National Institute of Standards and 
Technology Symposium, Transcript, 1997.

	 [7]		While	five	is	considered	the	minimum	number	
of test subjects required to discover the major-

ity of usability problems, SOI determined that 
its users fell into two broad groups, experienced 
statistical data users and individuals with a 
general interest in the U.S. tax system, so that 
it was necessary to try to get representatives of 
both groups.  Nielsen, Jakob, “Why You Only 
Need To Test with 5 Users,” http://www.useit.
com/alertbox/20000319.html, 2000. 

 [8]  See Section 508 of the Rehabilitation Act (29 
U.S.C. 794d), as amended by the Workforce 
Investment Act of 1998 (P.L. 105-220), August 
7, 1998 (herein referred to as Section 508).
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Special Studies in Federal Tax Statistics, 2005
Selected papers given primarily at the 2005 Joint Statistical Meetings of the American Statistical Association 
in Minneapolis, Minnesota, and at the National Tax Association’s Annual Conference on Taxation in Miami, 
Florida.  The volume is divided into seven major sections.  It begins with three papers: one on analyzing business 
organizational	structure	from	tax	data;	one	on	current	research	in	the	nonprofit	sector;	and	one	on	geographic	
variation	in	filing	rates	for	Schedule	H,	the	IRS	form	used	to	report	Social	Security	and	Medicare	wages	paid	to	
household employees.  Section 2 presents a paper on Schedule M corporate book-tax difference data, 1990-2003.  
Section	3	presents	a	paper	on	the	effects	of	taxation	on	corporate	financial	policy.		Section	4	contains	three	papers	
on measuring nonsampling error in the SOI Individual Tax Return Study; how imputed returns on the Corporate 
File compare to actual returns; and the impact of followup on Tax Year 2002 Foreign Tax Credit Data.  Section 5 
contains four papers on cluster analysis in describing tax return data; comparing income concepts at IRS, Census, 
and BLS; the 1999-2003 Statistics of Income Tax Return Edited Panel; and trends in 401(k) and IRA contribution 
activity, 1999-2002.  Section 6 presents a paper on the Estate and Personal Wealth sample design.  Finally, Section 
7 presents a paper on IRS area-to-area migration data.

Special Studies in Federal Tax Statistics, 2004
Selected papers given primarily at the 2004 Annual Meetings of the American Statistical Association in Toronto, 
Ontario, Canada, and two other professional conferences--the Luxembourg Wealth Study Workshop in Perugia, Italy, 
and	the	Conference	on	Privacy	in	Statistical	Databases	in	Barcelona,	Spain.		The	volume	is	divided	into	five	major	
sections.  It begins with four papers on recent developments in Statistics of Income research.  Section 2 includes 
five	papers	on	quality	assessment	of	administrative	records	data.		Section	3	presents	a	paper	on	estimates	of	income	
and wealth from survey and tax data.  Section 4 contains a paper on disclosure protection techniques.  Finally, Sec-
tion 5 presents a paper on some current theorietical research on multivariate analysis presented in a poster session 
at ASA.

Special Studies in Federal Tax Statistics, 2003
Selected papers given primarily at the 2003 Annual Meetings of the American Statistcal Association in San Fran-
cisco, CA.  The volume is divided into four major sections.  It begins with four papers presented in the same session 
under the topic, "Are the Rich Getting Richer and the Poor Getting Poorer?"  Section 2 includes a paper on survey 
methods.		Section	3	presents	five	papers	on	new	developments	in	tax	statistics	and	administrative	records.		Finally,	
Section 4 contains a paper on survey nonresponse and imputation.

Special Studies in Federal Tax Statistics, 2002
Selected papers given primarily at the 2002 Annual Meetings of the American Statistical Association in New York 
City and at the 2002 National Tax Association Conference in Orlando, FL.  The volume is divided into seven major 
sections.  It begins with two papers on recent IRS research.  Section 2 includes a group of four papers on method-
ological and analytical advances in tax statistics.  Section 3 presents two papers on statistical uses of administrative 
records.		Section	4	contains	a	paper	on	disseminating	IRS	locality	data.		Section	5	includes	a	paper	on	confidentiality	
and data access issues.  Section 6 presents a paper on measuring the quality of IRS responses to taxpayer inquiries.  
Finally, Section 7 includes two papers on distributional theory and computation.  
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Special Studies in Federal Tax Statistics, 2000-2001
Selected papers given primarily at the 2000 and 2001 Annual Meetings of the American Statistical Association in 
Indianapolis, Indiana and Atlanta, Georgia, plus one other paper presented at the International Conference on Estab-
lishment Surveys II in Buffalo, New York in 2000.  The volume is divided into four major sections.  The book begins 
with	five	papers	on	statistical	applications.		Section	2	presents	two	papers	on	confidentiality	and	data	access	issues.		
Section	3	presents	two	papers	on	changing	industry	codes.		Finally,	Section	4	includes	five	papers	on	analyses	of	
Federal tax and information returns.

Turning Administrative Systems Into Information Systems, 1999
Selected papers given at the 1999 Annual Meetings of the American Statistical Association (ASA) in Baltimore, MD.  
In addition, the report includes one paper presented at the 1998 ASA conference in Dallas, TX.  The volume is divided 
into six major sections.  The book begins with a complete ASA session analyzing administrative records from the 
U.S. tax system.  It contains four papers, as well as a set of comments on the presentations.  Section 2 presents four 
papers on the statistical uses of administrative records.  Section 3 includes two papers, which focus on employee 
satisfaction and customer satisfaction surveys at the IRS.  Section 4 contains two papers, one of which was presented 
at the 1998 ASA conference, that provide an update on the Survey of Consumer Finances.  Section 5 presents one 
paper that looks at the feasibility of preparing State corporate data by matching receipts and employment data by 
State and industry.  Finally, the volume concludes with a paper on distributional theory and computation.  

Turning Administrative Systems Into Information Systems, 1998-1999
Selected papers given at the 1998 Annual Meetings of the American Statistical Association in Dallas, Texas.  In ad-
dition, the report includes a session of papers presented in 1999 at the Annual Meetings of the American Economic 
Association	(AEA)	plus	one	other	paper.		The	volume	is	divided	into	five	major	sections.		The	book	begins	with	the	
AEA session in memory of the late Dr. Daniel B. Radner, Social Security Administration economist.  It contains four 
papers	on	new	empirical	findings	in	the	distributions	of	personal	income	and	wealth,	as	well	as	two	sets	of	introduc-
tory remarks and two sets of comments on the presentations.  Section 2 presents two papers on data measurement 
and data bases for economic research.  Section 3 includes two papers, which focus on sample design, estimation, and 
imputation	research.		Section	4	explores	issues	dealing	with	public-use	files,	including	the	potential	for	disclosure.		
Finally,	Section	5	concludes	the	volume	with	a	paper	verifying	the	classification	of	public	charities	in	the	1994	Sta-
tistics of Income Study Sample.  (It is the only paper not presented at the ASA or AEA meetings.)  

Turning Administrative Systems Into Information Systems, 1996-1997
Selected papers given primarily at the 1996 and 1997 Annual Meetings of the American Statistical Association in 
Chicago, Illinois and Anaheim, California, plus one non-ASA article.  The volume is divided into nine major sec-
tions.  The book begins with a paper originally printed as a textbook article on inheritance and wealth in America.  
Section 2 presents papers on using administrative records for generating national statistics.  Section 3 contains two 
sets of panel reports on the statistical uses of administrative records.  Section 4 focuses on methodological research.  
Section 5 explores issues dealing with quality improvement in government.  Section 6 presents  a panel discussion 
on Customer Satisfaction Surveys.  Section 7 focuses on the effect of downsizing on Federal statistics.  Section 8 
explores the privacy area.  Finally, Section 9 concludes with seven papers on statistical disclosure limitation.  

Turning Administrative Systems Into Information Systems, 1995
Selected papers given primarily at the 1995 Annual Meetings of the American Statistical Association in Orlando, 
Florida	and	another	conference.		The	volume	is	divided	into	five	major	sections.		The	book	begins	with	a	paper	on	
SOI migration data, giving an example of how this unique dataset can be used by demographers and policy research-
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ers.  Section 2 presents papers on sample designs and redesigns, as well as on SOI efforts in the corporation and 
partnership areas.  Section 3 contains papers on weighting and estimation research.  Section 4 focuses on analytical 
approaches to quality improvement, from graphical techniques to cognitive research.  Finally, Section 5 concludes 
with papers from an invited session on record linkage applications for health care policy, a session organized by SOI 
in view of its long-term interest in improving matching techniques for administrative and survey data.

Turning Administrative Systems Into Information Systems, 1994
Selected papers given primarily at the 1994 Annual Meetings of the American Statistical Association in Toronto, 
Ontario, Canada.  The volume is divided into nine major sections.  The book begins with an overview of the Statistics 
of Income Programs, describing the origins and customers of various SOI data and highlighting our products and 
services.  Section 2 presents the descriptive results from two recent studies--one on sales of capital assets and one 
on	self-employed	nonfilers.		Section	3	contains	papers	and	discussion	from	a	session	on	privacy	issues	involved	in	
using administrative record data.  The next two sections are much more methodical in nature:  Section 4 focuses on 
sample design and estimation work in SOI, beginning with a reprint of a 1963 paper by W. Edwards Deming, which 
presents an evaluation of the SOI sample.  Section 5 presents data on record linkage.  Section 6 draws together the 
papers from a session on nonresponse in Federal surveys.  Section 7 is a more statistical section, which contains 
a collection of papers on imputation methodology in a number of different arenas.  Section 8 focuses on another 
long-time theme of these volumes--quality improvement efforts.  Finally, Section 9 presents two unrelated papers 
on data preparation techniques. 

Turning Administrative Systems Into Information Systems, 1993
Selected papers given at the 1993 Annual Meetings of the American Statistical Association in San Francisco, California 
and other related conferences.  The volume contains seven major sections, each focusing on a somewhat different 
area	of	research.		The	first	section	begins	with	a	paper	that	presents	a	view	for	the	future	of	the	Federal	statistical	
system.		This	effort	is	part	of	a	dialogue	with	other	agency	leaders	to	redefine	a	cohesive	plan	for	Federal	data	pro-
ducers and users.  Section 2 contains several descriptive papers based on tax data about individuals, and Section 3 
looks at similar uses of tax data for businesses.  Section 4 focuses on sample design issues for several SOI projects, 
while Section 5 presents information on improvements to analytical techniques.  Finally, Sections 6 and 7 describe 
a number of different studies SOI is involved in to improve the quality and productivity of other areas of IRS.

Turning Administrative Systems Into Information Systems, 1991-1992
Selected papers given mostly at the 1991 and 1992 Annual meetings of the American Statistical Association, held, 
respectively, in Atlanta, Georgia and Boston, Massachusetts.  Papers chosen for this volume exemplify some of the 
basic changes that are occurring in the Statistics of Income program during the 1990’s, including discussions of 
methodological improvements and applications currently under way in the U.S. Federal statistical community.  The 
volume contains seven general areas of interest: information from tax return data; the 1989 Survey of Consumer 
Finances; estimation and methodological research in the SOI business program; sample design and weighting is-
sues in the SOI individual program; some quality improvement applications; some technological innovations for 
SOI research; and a look to the future data needs for the Federal sector.  Previous volumes in the series were called 
Statistics of Income and Related Administrative Record Research (see below).  The title was changed to more clearly 
reflect	how	the	Internal	Revenue	Service’s	Statistics	of	Income	function	is	adapting	to	better	meet	the	informational	
needs of its many customers.

Statistics of Income and Related Administrative Record Research, 1990
Selected papers given primarily at the 1990 Annual meeting of the American Statistical Association in Anaheim, 
California.  Papers selected for this volume contain discussions of methodological improvements and applications 
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currently under way in the U.S. Federal statistical community.  In particular, the focus is on work being done by the 
Statistics	of	Income	Division	of	the	Internal	Revenue	Service	(IRS).		The	volume	covers	five	general	areas:		longi-
tudinal panel data and estimation issues; analytical research using survey and administrative data; design issues for 
Federal surveys; information on the conclusions of the Establishment Reporting Unit Match Study; and a look at 
future data needs for the Federal sector.  

Statistics of Income and Related Administrative Record Research, 1988-1989
Selected papers given mostly at the 1988 and 1989 Annual Meetings of the American Statistical Association in New 
Orleans, Louisiana and Washington, D.C., respectively.  Papers for the volume focus on perspectives on statistics 
in government--in celebration of ASA’s 150th anniversary; improvements in income and wealth estimation; meth-
odological enhancements to administrative record data; some looks at the effects of tax reform; and technological 
innovations for statistical use.

Statistics of Income and Related Administrative Record Research, 1986-1987
Selected papers given, for the most part, at the 1986 and 1987 Annual Meetings of American Statistical Association 
in Chicago and San Francisco, respectively.  Papers focus on ongoing wealth estimation research and U.S. and Ca-
nadian	efforts	regarding	methodological	enhancements	to	corporate	and	individual	tax	data	and	recent	refinements	
to disclosure avoidance techniques.

Record Linkage Techniques, 1985*
The Proceedings of the Workshop on Exact Matching Methodologies held in Arlington, Virginia, May 9-10, 1985.  
Includes landmark background papers on record linkage use and papers describing methodological enhancements, 
applications, and technological developments, as well as extensive bibliographic material on exact matching. 

Statistical Uses of Administrative Records:  Recent Research and Present Prospects*
A two-volume reference handbook on research results involving the use of administrative records for statistical 
purposes from 1979 through 1982:

 Volume I (March 1984) focuses on general considerations in administrative record research, applications 
of income tax data, uses based on data from other major administrative record systems, and enhancements 
to statistical systems using administrative data.

 Volume II (July 1984) focuses on comparability and quality issues, access to administrative records for 
statistical purposes, selected examples of end uses of linked administrative statistical systems, and a status 
report that sets goals for the future.

Statistics of Income and Related Administrative Record Research, 1984*
Selected papers given at the 1984 Annual Meeting of American Statistical Association in Philadelphia.  Papers focus 
on future policy issues, applications, exact matching techniques, quality control, missing data, and sample design 
issues.

Statistics of Income and Related Administrative Record Research, 1983*
Selected papers given at the 1983 Annual Meeting of American Statistical Association in Toronto.  Papers focus on 
use of administrative records in censuses and surveys, applications for epidemiologic research and other statistical 
purposes,	and	statistical	techniques	involving	imputation	and	disclosure	and	confidentiality		
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Statistics of Income and Related Administrative Record Research, 1982*
Selected papers given at the 1982 Annual Meeting of American Statistical Association in Cincinnati.  Papers focus 
on statistical uses of administrative records, resulting methodologic advances, and estimates and projections for 
intercensal updates.

Statistics of Income and Related Administrative Record Research*
Selected papers given at the 1981 Annual Meeting of American Statistical Association in Detroit.  Papers focus on 
applications and methodologies with an emphasis on IRS’s Statistics of Income Program, the Small Business Data 
Base,	nonprofit	and	pension	data,	and	on	Canada’s	Generalized	Iterative	Record	Linkage	System.

Economic and Demographic Statistics*
Selected papers given at the 1980 Annual Meeting of American Statistical Association in Houston.  Papers focus 
on evaluation of the 1977 Economic Census, CPS hot deck techniques, and efforts to upgrade Social Security’s 
Continuous Work History Sample.

______________________________

*Out of print—Copies of selected papers can be obtained upon request.

NOTE:   The IRS Methodology Reports on statistical uses of administrative records are now being offered free of 
charge.  To obtain copies, write to:

 Statistical Information Services (SIS)   Phone:   (202) 874-0410
 Statistics of Income Division (RAS:S:SS:SD)  FAX:      (202) 874-0964
 Internal Revenue Service    E-mail:  sis@irs.gov
 P.O. Box 2608
 Washington, DC  20013-2608
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